Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
PLoS One ; 19(2): e0287893, 2024.
Article in English | MEDLINE | ID: mdl-38324542

ABSTRACT

Wildlife trafficking creates favorable scenarios for intra- and inter-specific interactions that can lead to parasite spread and disease emergence. Among the fauna affected by this activity, primates are relevant due to their potential to acquire and share zoonoses - infections caused by parasites that can spread between humans and other animals. Though it is known that most primate parasites can affect multiple hosts and that many are zoonotic, comparative studies across different contexts for animal-human interactions are scarce. We conducted a multi-parasite screening targeting the detection of zoonotic infections in wild-caught monkeys in nine Peruvian cities across three contexts: captivity (zoos and rescue centers, n = 187); pet (households, n = 69); and trade (trafficked or recently confiscated, n = 132). We detected 32 parasite taxa including mycobacteria, simian foamyvirus, bacteria, helminths, and protozoa. Monkeys in the trade context had the highest prevalence of hemoparasites (including Plasmodium malariae/brasilianum, Trypanosoma cruzi, and microfilaria) and enteric helminths and protozoa were less common in pet monkeys. However, parasite communities showed overall low variation between the three contexts. Parasite richness (PR) was best explained by host genus and the city where the animal was sampled. Squirrel (genus Saimiri) and wooly (genus Lagothrix) monkeys had the highest PR, which was ~2.2 times the PR found in tufted capuchins (genus Sapajus) and tamarins (genus Saguinus/Leontocebus) in a multivariable model adjusted for context, sex, and age. Our findings illustrate that the threats of wildlife trafficking to One Health encompass exposure to multiple zoonotic parasites well-known to cause disease in humans, monkeys, and other species. We demonstrate these threats continue beyond the markets where wildlife is initially sold; monkeys trafficked for the pet market remain a reservoir for and contribute to the translocation of zoonotic parasites to households and other captive facilities where contact with humans is frequent. Our results have practical applications for the healthcare of rescued monkeys and call for urgent action against wildlife trafficking and ownership of monkeys as pets.


Subject(s)
Helminths , Parasites , Plasmodium , Humans , Animals , Peru/epidemiology , Prevalence , Zoonoses/epidemiology , Animals, Wild/microbiology , Haplorhini , Saguinus
2.
PLoS Negl Trop Dis ; 15(2): e0009000, 2021 02.
Article in English | MEDLINE | ID: mdl-33566811

ABSTRACT

The Peruvian-Brazilian border is a highly endemic tegumentary leishmaniasis region in South America. The interoceanic highway is a commercial route that connects Peru and Brazil through Madre de Dios and has raised concerns about its impact on previously undisturbed areas. In order to assess leishmaniasis transmission risk along this highway, we conducted a surveillance study of the sand fly populations in this area. Sand flies were collected between 2009 and 2010 along transects at 200 m, 600 m and 1000 m from six study sites located along the highway (Iberia, La Novia, Alto Libertad, El Carmen, Florida Baja, Mazuko and Mavila) and an undisturbed area (Malinowski). Collected specimens were identified based on morphology and non-engorged females of each species were pooled and screened by kinetoplast PCR to detect natural Leishmania infections. A total of 9,023 specimens were collected belonging to 54 different Lutzomyia species including the first report of Lu. gantieri in Peru. Four species accounted for 50% of all specimens (Lutzomyia carrerai carrerai, Lu. davisi, Lu. shawi and Lu. richardwardi). El Carmen, Alto Libertad, Florida Baja and Malinowski presented higher Shannon diversity indexes (H = 2.36, 2.30, 2.17 and 2.13, respectively) than the most human disturbed sites of Mazuko and La Novia (H = 1.53 and 1.06, respectively). PCR detected 10 positive pools belonging to Lu. carrerai carrerai, Lu. yuilli yuilli, Lu. hirsuta hirsuta, Lu. (Trichophoromyia) spp., and Lu. (Lutzomyia) spp. Positive pools from 1,000 m transects had higher infectivity rates than those from 600 m and 200 m transects (9/169 = 5.3% vs 0/79 = 0% and 1/127 = 0.8%, p = 0.018). El Carmen, accounted for eight out of ten positives whereas one positive was collected in Florida Baja and Mazuko each. Our study has shown differences in sand fly diversity, abundance and species composition across and within sites. Multiple clustered Lutzomyia pools with natural Leishmania infection suggest a complex, diverse and spotty role in leishmaniasis transmission in Madre de Dios, with increased risk farther from the highway.


Subject(s)
Animal Distribution/physiology , Leishmania/physiology , Animals , Brazil , DNA, Protozoan/genetics , DNA, Protozoan/isolation & purification , Female , Host-Parasite Interactions , Leishmania/genetics , Male , Peru
3.
Proc Biol Sci ; 285(1880)2018 06 13.
Article in English | MEDLINE | ID: mdl-29875297

ABSTRACT

Urbanization often substantially influences animal movement and gene flow. However, few studies to date have examined gene flow of the same species across multiple cities. In this study, we examine brown rats (Rattus norvegicus) to test hypotheses about the repeatability of neutral evolution across four cities: Salvador, Brazil; New Orleans, USA; Vancouver, Canada; and New York City, USA. At least 150 rats were sampled from each city and genotyped for a minimum of 15 000 genome-wide single nucleotide polymorphisms. Levels of genome-wide diversity were similar across cities, but varied across neighbourhoods within cities. All four populations exhibited high spatial autocorrelation at the shortest distance classes (less than 500 m) owing to limited dispersal. Coancestry and evolutionary clustering analyses identified genetic discontinuities within each city that coincided with a resource desert in New York City, major waterways in New Orleans, and roads in Salvador and Vancouver. Such replicated studies are crucial to assessing the generality of predictions from urban evolution, and have practical applications for pest management and public health. Future studies should include a range of global cities in different biomes, incorporate multiple species, and examine the impact of specific characteristics of the built environment and human socioeconomics on gene flow.


Subject(s)
Gene Flow , Genotype , Polymorphism, Single Nucleotide , Brazil , British Columbia , Cities , Cluster Analysis , New Orleans , New York City
4.
Retrovirology ; 12: 89, 2015 Oct 29.
Article in English | MEDLINE | ID: mdl-26514626

ABSTRACT

BACKGROUND: Although simian foamy viruses (SFV) are the only exogenous retroviruses to infect New World monkeys (NWMs), little is known about their evolutionary history and epidemiology. Previous reports show distinct SFVs among NWMs but were limited to small numbers of captive or wild monkeys from five (Cebus, Saimiri, Ateles, Alouatta, and Callithrix) of the 15 NWM genera. Other studies also used only PCR testing or serological assays with limited validation and may have missed infection in some species. We developed and validated new serological and PCR assays to determine the prevalence of SFV in blood specimens from a large number of captive NWMs in the US (n = 274) and in captive and wild-caught NWMs (n = 236) in Peruvian zoos, rescue centers, and illegal trade markets. Phylogenetic and co-speciation reconciliation analyses of new SFV polymerase (pol) and host mitochondrial cytochrome B sequences, were performed to infer SFV and host co-evolutionary histories. RESULTS: 124/274 (45.2 %) of NWMs captive in the US and 59/157 (37.5 %) of captive and wild-caught NWMs in Peru were SFV WB-positive representing 11 different genera (Alouatta, Aotus, Ateles, Cacajao, Callithrix, Cebus, Lagothrix, Leontopithecus, Pithecia, Saguinus and Saimiri). Seroprevalences were lower at rescue centers (10/53, 18.9 %) compared to zoos (46/97, 47.4 %) and illegal trade markets (3/7, 8/19, 42.9 %) in Peru. Analyses showed that the trees of NWM hosts and SFVs have remarkably similar topologies at the level of species and sub-populations suggestive of co-speciation. Phylogenetic reconciliation confirmed 12 co-speciation events (p < 0.002) which was further supported by obtaining highly similar divergence dates for SFV and host genera and correlated SFV-host branch times. However, four ancient cross-genus transmission events were also inferred for Pitheciinae to Atelidae, Cacajao to ancestral Callithrix or Cebus monkeys, between Callithrix and Cebus monkeys, and Lagothrix to Alouatta. CONCLUSIONS: We demonstrate a broad distribution and stable co-speciation history of SFV in NWMs at the species level. Additional studies are necessary to further explore the epidemiology and natural history of SFV infection of NWMs and to determine the zoonotic potential for persons exposed to infected monkeys in captivity and in the wild.


Subject(s)
Monkey Diseases/epidemiology , Platyrrhini/virology , Primates/virology , Retroviridae Infections/veterinary , Simian foamy virus/genetics , Simian foamy virus/isolation & purification , Animals , Biological Evolution , Humans , Monkey Diseases/virology , Peru/epidemiology , Phylogeny , Polymerase Chain Reaction , Retroviridae Infections/blood , Retroviridae Infections/epidemiology , Sensitivity and Specificity , Seroepidemiologic Studies , Serologic Tests
5.
Ecohealth ; 12(2): 288-97, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25515075

ABSTRACT

The Mycobacterium tuberculosis complex causes tuberculosis in humans and nonhuman primates and is a global public health concern. Standard diagnostics rely upon host immune responses to detect infection in nonhuman primates and lack sensitivity and specificity across the spectrum of mycobacterial infection in these species. We have previously shown that the Oral Swab PCR (OSP) assay, a direct pathogen detection method, can identify the presence of M. tuberculosis complex in laboratory and free-ranging Old World monkeys. Addressing the current limitations in tuberculosis diagnostics in primates, including sample acquisition and pathogen detection, this paper furthers our understanding of the presence of the tuberculosis-causing bacteria among New World monkeys in close contact with humans. Here we use the minimally invasive OSP assay, which includes buccal swab collection followed by amplification of the IS6110 repetitive nucleic acid sequence specific to M. tuberculosis complex subspecies, to detect the bacteria in the mouths of Peruvian New World monkeys. A total of 220 buccal swabs from 16 species were obtained and positive amplification of the IS6110 sequence was observed in 30 (13.6%) of the samples. To our knowledge, this is the first documentation of M. tuberculosis complex DNA in a diverse sample of Peruvian Neotropical primates.


Subject(s)
Bacteriological Techniques/methods , Tuberculosis/diagnosis , Tuberculosis/veterinary , Age Factors , Animals , DNA, Bacterial , DNA, Mitochondrial , Female , Male , Monkey Diseases , Mycobacterium/genetics , Peru , Platyrrhini/microbiology , Polymerase Chain Reaction , Tuberculosis/epidemiology
6.
PLoS One ; 9(7): e103358, 2014.
Article in English | MEDLINE | ID: mdl-25062033

ABSTRACT

An estimated 2.3 million disability-adjusted life years are lost globally from leishmaniasis. In Peru's Amazon region, the department of Madre de Dios (MDD) rises above the rest of the country in terms of the annual incidence rates of human leishmaniasis. Leishmania (Viannia) braziliensis is the species most frequently responsible for the form of disease that results in tissue destruction of the nose and mouth. However, essentially nothing is known regarding the reservoirs of this vector-borne, zoonotic parasite in MDD. Wild rodents have been suspected, or proven, to be reservoirs of several Leishmania spp. in various ecosystems and countries. Additionally, people who live or work in forested terrain, especially those who are not regionally local and whose immune systems are thus naïve to the parasite, are at most risk for contracting L. (V.) braziliensis. Hence, the objective of this study was to collect tissues from wild rodents captured at several study sites along the Amazonian segment of the newly constructed Transoceanic Highway and to use molecular laboratory techniques to analyze samples for the presence of Leishmania parasites. Liver tissues were tested via polymerase chain reaction from a total of 217 rodents; bone marrow and skin biopsies (ear and tail) were also tested from a subset of these same animals. The most numerous rodent species captured and tested were Oligoryzomys microtis (40.7%), Hylaeamys perenensis (15.7%), and Proechimys spp. (12%). All samples were negative for Leishmania, implying that although incidental infections may occur, these abundant rodent species are unlikely to serve as primary reservoirs of L. (V.) braziliensis along the Transoceanic Highway in MDD. Therefore, although these rodent species may persist and even thrive in moderately altered landscapes, we did not find any evidence to suggest they pose a risk for L. (V.) braziliensis transmission to human inhabitants in this highly prevalent region.


Subject(s)
Leishmania braziliensis/isolation & purification , Leishmaniasis/transmission , Rodentia/parasitology , Animals , Bone Marrow/parasitology , Environment , Humans , Leishmania braziliensis/pathogenicity , Leishmaniasis/epidemiology , Liver/parasitology , Peru , Rodentia/classification , Skin/parasitology
7.
Emerg Infect Dis ; 20(2): 257-60, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24447689

ABSTRACT

We investigated hantaviruses in rodents in the southern Amazon Basin of Peru and identified an Andes virus variant from Neacomys spinosus mice. This finding extends the known range of this virus in South America and the range of recognized hantaviruses in Peru. Further studies of the epizoology of hantaviruses in this region are warranted.


Subject(s)
Hantavirus Infections/veterinary , Orthohantavirus/genetics , RNA, Viral/classification , Rodent Diseases , Sigmodontinae/virology , Animals , Disease Reservoirs , Female , Orthohantavirus/classification , Orthohantavirus/isolation & purification , Hantavirus Infections/epidemiology , Hantavirus Infections/virology , Male , Peru/epidemiology , Phylogeny , RNA, Viral/genetics
8.
J Wildl Dis ; 48(4): 910-7, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23060492

ABSTRACT

As part of ongoing surveillance for avian influenza viruses (AIV) in Peruvian birds, in June 2008, we sampled 600 land birds of 177 species, using real-time reverse-transcription PCR. We addressed the assumption that AIV prevalence is low or nil among land birds, a hypodiesis that was not supported by the results-rather, we found AIV infections at relatively high prevalences in birds of the orders Apodiformes (hummingbirds) and Passeriformes (songbirds). Surveillance programs for monitoring spread and identification of AIV should thus not focus solely on water birds.


Subject(s)
Animals, Wild/virology , Disease Reservoirs/veterinary , Influenza A virus/isolation & purification , Influenza in Birds/epidemiology , Sentinel Surveillance/veterinary , Animals , Birds , Disease Reservoirs/virology , Female , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza in Birds/transmission , Male , Passeriformes/virology , Peru/epidemiology , Prevalence , Species Specificity
9.
J Wildl Dis ; 47(3): 792-5, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21719856

ABSTRACT

Wild birds serve as natural reservoirs and sometimes harbor low-pathogenic avian influenza viruses. However, mutation of the virus can result in highly pathogenic strains, often more common among H5 and H7 genotypes. We report the isolation of a low-pathogenic H7N3 avian influenza in a Peruvian wetland.


Subject(s)
Influenza A Virus, H7N3 Subtype/isolation & purification , Influenza in Birds/epidemiology , Animals , Animals, Wild/virology , Birds , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Female , Influenza in Birds/virology , Male , Peru/epidemiology
10.
Emerg Infect Dis ; 15(6): 935-8, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19523296

ABSTRACT

To determine genotypes of avian influenza virus circulating among wild birds in South America, we collected and tested environmental fecal samples from birds along the coast of Peru, June 2006-December 2007. The 9 isolates recovered represented 4 low-pathogenicity avian influenza strains: subtypes H3N8, H4N5, H10N9, and H13N2.


Subject(s)
Animals, Wild/virology , Bird Diseases , Birds/virology , Influenza A Virus, H3N8 Subtype/isolation & purification , Influenza A virus , Influenza in Birds , Animal Migration , Animals , Bird Diseases/epidemiology , Bird Diseases/virology , Ducks/virology , Feces/virology , Influenza A Virus, H3N8 Subtype/classification , Influenza A Virus, H3N8 Subtype/genetics , Influenza A virus/classification , Influenza A virus/genetics , Influenza A virus/isolation & purification , Influenza in Birds/epidemiology , Influenza in Birds/virology , Peru/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL