Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Legal Med ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985195

ABSTRACT

The importance of non-human DNA in the forensic field has increased greatly in recent years, together with the type of applications. The molecular species identification of animal and botanical material may be crucial both for wildlife trafficking and crime scene investigation. However, especially for forensic botany, several challenges slow down the implementation of the discipline in the routine.Although the importance of molecular analysis of animal origin samples is widely recognized and the same value is acknowledged to the botanical counterpart, the latter does not find the same degree of application.The availability of molecular methods, especially useful in cases where the material is fragmented, scarce or spoiled preventing the morphological identification, is not well known. This work is intended to reaffirm the relevance of non-human forensic genetics (NHFG), highlighting differences, benefits and pitfalls of the current most common molecular analysis workflow for animal and botanical samples, giving a practical guide. A flowchart describing the analysis paths, divided in three major working areas (inspection and sampling, molecular analysis, data processing and interpretation), is provided. More real casework examples of the utility of non-human evidence in forensic investigations should be shared by the scientific community, especially for plants. Moreover, concrete efforts to encourage initiatives in order to promote quality and standardization in the NHFG field are also needed.

2.
Int J Legal Med ; 136(5): 1255-1260, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35333964

ABSTRACT

The availability of a reliable molecular assay in species recognition in forensic cases is of paramount importance when visual inspection or morphological methods are not exhaustive, especially from challenging samples. Here, two different caseworks involving bone samples founded during medico-legal outdoor investigations are presented. In order to exclude the human nature of the specimens and to determine the exact species they belong to, we proceeded with the molecular approach trying to generate sequences from the classical mtDNA markers cyt b and COI. However, they both gave critical results. For this reason, a short amplicon of ~ 150 bp of the 12S rRNA gene was used as an alternative.This short fragment was sufficient to identify the biological origin of the bone specimens with a high degree of certainty leading to the exclusion of their human nature. This work highlights the utility of the 12S rRNA and underlines the importance of deepen the choice of alternative shorter markers with respect to the classical ones, in order to achieve species identification even from challenging and degraded material in forensic criminal and wildlife caseworks.


Subject(s)
DNA, Mitochondrial , RNA, Ribosomal , DNA Primers/genetics , DNA, Mitochondrial/genetics , Humans , Phylogeny , Polymerase Chain Reaction , RNA, Ribosomal/genetics
3.
Int J Legal Med ; 135(6): 2155-2161, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34191097

ABSTRACT

Fly artifacts resulting from insect activity could act as confounding factors on a crime scene and interfere with bloodstain pattern analysis interpretation. Several techniques have been proposed to distinguish fly artifacts from human bloodstains based on morphological approach and immunological assay, but a DNA-based method has not been developed so far. Even if in forensic genetic investigations the detection of human DNA is generally the primary goal, fly artifacts can provide useful information on the dynamics of crime events. The present study provides a molecular method to detect fly DNA from artifacts deposited by Calliphora vomitoria after feeding on human blood through the analysis of the mitochondrial cytochrome oxidase gene subunit I (COI). Fly artifacts originated from digestive process and of different morphology spanning from red and brownish/light brown, circular and elliptical stains to artifacts with sperm-like tail or a tear-shaped body were collected. The COI amplification was successfully obtained in 94% of fly artifact samples. The method showed high sensitivity and reproducibility, and no human DNA contamination was observed, offering specificity for use in confirmatory test. This molecular approach permits the distinction of fly artifacts from genuine bloodstains and the identification of fly's species through the COI region sequencing by protocols usually applied in forensic genetic laboratories.


Subject(s)
Artifacts , Blood Stains , Diptera , Animals , DNA , Diptera/genetics , Feeding Behavior , Humans , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...