Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Clin Invest ; 134(13)2024 May 14.
Article in English | MEDLINE | ID: mdl-38758740

ABSTRACT

The diversity of structural variants (SVs) in melanoma and how they impact oncogenesis are incompletely known. We performed harmonized analysis of SVs across melanoma histologic and genomic subtypes, and we identified distinct global properties between subtypes. These included the frequency and size of SVs and SV classes, their relation to chromothripsis events, and the impact on cancer-related genes of SVs that alter topologically associated domain (TAD) boundaries. Following our prior identification of double-stranded break repair deficiency in a subset of triple-wild-type cutaneous melanoma, we identified MRE11 and NBN loss-of-function SVs in melanomas with this mutational signature. Experimental knockouts of MRE11 and NBN, followed by olaparib cell viability assays in melanoma cells, indicated that dysregulation of each of these genes may cause sensitivity to PARP inhibitors in cutaneous melanomas. Broadly, harmonized analysis of melanoma SVs revealed distinct global genomic properties and molecular drivers, which may have biological and therapeutic impact.


Subject(s)
Melanoma , Melanoma/genetics , Melanoma/pathology , Melanoma/metabolism , Humans , Cell Line, Tumor , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Skin Neoplasms/metabolism , Carcinogenesis/genetics , MRE11 Homologue Protein/genetics , MRE11 Homologue Protein/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Phthalazines/pharmacology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Genomic Structural Variation/genetics , Piperazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
2.
bioRxiv ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38746320

ABSTRACT

Pediatric solid tumors are rare malignancies that represent a leading cause of death by disease among children in developed countries. The early age-of-onset of these tumors suggests that germline genetic factors are involved, yet conventional germline testing for short coding variants in established predisposition genes only identifies pathogenic events in 10-15% of patients. Here, we examined the role of germline structural variants (SVs)-an underexplored form of germline variation-in pediatric extracranial solid tumors using germline genome sequencing of 1,766 affected children, their 943 unaffected relatives, and 6,665 adult controls. We discovered a sex-biased association between very large (>1 megabase) germline chromosomal abnormalities and a four-fold increased risk of solid tumors in male children. The overall impact of germline SVs was greatest in neuroblastoma, where we revealed burdens of ultra-rare SVs that cause loss-of-function of highly expressed, mutationally intolerant, neurodevelopmental genes, as well as noncoding SVs predicted to disrupt three-dimensional chromatin domains in neural crest-derived tissues. Collectively, our results implicate rare germline SVs as a predisposing factor to pediatric solid tumors that may guide future studies and clinical practice.

3.
Eur Urol Open Sci ; 62: 107-122, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38496821

ABSTRACT

Background and objective: Previous germline studies on renal cell carcinoma (RCC) have usually pooled clear and non-clear cell RCCs and have not adequately accounted for population stratification, which might have led to an inaccurate estimation of genetic risk. Here, we aim to analyze the major germline drivers of RCC risk and clinically relevant but underexplored germline variant types. Methods: We first characterized germline pathogenic variants (PVs), cryptic splice variants, and copy number variants (CNVs) in 1436 unselected RCC patients. To evaluate the enrichment of PVs in RCC, we conducted a case-control study of 1356 RCC patients ancestry matched with 16 512 cancer-free controls using approaches accounting for population stratification and histological subtypes, followed by characterization of secondary somatic events. Key findings and limitations: Clear cell RCC patients (n = 976) exhibited a significant burden of PVs in VHL compared with controls (odds ratio [OR]: 39.1, p = 4.95e-05). Non-clear cell RCC patients (n = 380) carried enrichment of PVs in FH (OR: 77.9, p = 1.55e-08) and MET (OR: 1.98e11, p = 2.07e-05). In a CHEK2-focused analysis with European participants, clear cell RCC (n = 906) harbored nominal enrichment of low-penetrance CHEK2 variants-p.Ile157Thr (OR: 1.84, p = 0.049) and p.Ser428Phe (OR: 5.20, p = 0.045), while non-clear cell RCC (n = 295) exhibited nominal enrichment of CHEK2 loss of function PVs (OR: 3.51, p = 0.033). Patients with germline PVs in FH, MET, and VHL exhibited significantly earlier age of cancer onset than patients without germline PVs (mean: 46.0 vs 60.2 yr, p < 0.0001), and more than half had secondary somatic events affecting the same gene (n = 10/15, 66.7%). Conversely, CHEK2 PV carriers exhibited a similar age of onset to patients without germline PVs (mean: 60.1 vs 60.2 yr, p = 0.99), and only 30.4% carried somatic events in CHEK2 (n = 7/23). Finally, pathogenic germline cryptic splice variants were identified in SDHA and TSC1, and pathogenic germline CNVs were found in 18 patients, including CNVs in FH, SDHA, and VHL. Conclusions and clinical implications: This analysis supports the existing link between several RCC risk genes and RCC risk manifesting in earlier age of onset. It calls for caution when assessing the role of CHEK2 due to the burden of founder variants with varying population frequency. It also broadens the definition of the RCC germline landscape of pathogenicity to incorporate previously understudied types of germline variants. Patient summary: In this study, we carefully compared the frequency of rare inherited mutations with a focus on patients' genetic ancestry. We discovered that subtle variations in genetic background may confound a case-control analysis, especially in evaluating the cancer risk associated with specific genes, such as CHEK2. We also identified previously less explored forms of rare inherited mutations, which could potentially increase the risk of kidney cancer.

4.
Genome Med ; 15(1): 65, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37658461

ABSTRACT

BACKGROUND: Breast cancer patients from the indigenous Arab population present much earlier than patients from Western countries and have traditionally been underrepresented in cancer genomics studies. The contribution of polygenic and Mendelian risk toward the earlier onset of breast cancer in the population remains elusive. METHODS: We performed low-pass whole genome sequencing (lpWGS) and whole-exome sequencing (WES) from 220 female breast cancer patients unselected for positive family history from the indigenous Arab population. Using publicly available resources, we imputed population-specific variants and calculated breast cancer burden-sensitive polygenic risk scores (PRS). Variant pathogenicity was also evaluated on exome variants with high coverage. RESULTS: Variants imputed from lpWGS showed high concordance with paired exome (median dosage correlation: 0.9459, Interquartile range: 0.9410-0.9490). After adjusting the PRS to the Arab population, we found significant associations between PRS performance in risk prediction and first-degree relative breast cancer history prediction (Spearman rho=0.43, p = 0.03), where breast cancer patients in the top PRS decile are 5.53 (95% CI 1.76-17.97, p = 0.003) times more likely also to have a first-degree relative diagnosed with breast cancer compared to those in the middle deciles. In addition, we found evidence for the genetic liability threshold model of breast cancer where among patients with a family history of breast cancer, pathogenic rare variant carriers had significantly lower PRS than non-carriers (p = 0.0205, Mann-Whitney U test) while for non-carriers every standard deviation increase in PRS corresponded to 4.52 years (95% CI 8.88-0.17, p = 0.042) earlier age of presentation. CONCLUSIONS: Overall, our study provides a framework to assess polygenic risk in an understudied population using lpWGS and identifies common variant risk as a factor independent of pathogenic variant carrier status for earlier age of onset of breast cancer among indigenous Arab breast cancer patients.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , Arabs/genetics , Breast , Risk Factors , Exome
5.
Clin Cancer Res ; 29(22): 4613-4626, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37725576

ABSTRACT

PURPOSE: Patients with relapsed or refractory T-cell acute lymphoblastic leukemia (T-ALL) or lymphoblastic lymphoma (T-LBL) have limited therapeutic options. Clinical use of genomic profiling provides an opportunity to identify targetable alterations to inform therapy. EXPERIMENTAL DESIGN: We describe a cohort of 14 pediatric patients with relapsed or refractory T-ALL enrolled on the Leukemia Precision-based Therapy (LEAP) Consortium trial (NCT02670525) and a patient with T-LBL, discovering alterations in platelet-derived growth factor receptor-α (PDGFRA) in 3 of these patients. We identified a novel mutation in PDGFRA, p.D842N, and used an integrated structural modeling and molecular biology approach to characterize mutations at D842 to guide therapeutic targeting. We conducted a preclinical study of avapritinib in a mouse patient-derived xenograft (PDX) model of FIP1L1-PDGFRA and PDGFRA p.D842N leukemia. RESULTS: Two patients with T-ALL in the LEAP cohort (14%) had targetable genomic alterations affecting PDGFRA, a FIP1-like 1 protein/PDGFRA (FIP1L1-PDGFRA) fusion and a novel mutation in PDGFRA, p.D842N. The D842N mutation resulted in PDGFRA activation and sensitivity to tested PDGFRA inhibitors. In a T-ALL PDX model, avapritinib treatment led to decreased leukemia burden, significantly prolonged survival, and even cured a subset of mice. Avapritinib treatment was well tolerated and yielded clinical benefit in a patient with refractory T-ALL. CONCLUSIONS: Refractory T-ALL has not been fully characterized. Alterations in PDGFRA or other targetable kinases may inform therapy for patients with refractory T-ALL who otherwise have limited treatment options. Clinical genomic profiling, in real time, is needed for fully informed therapeutic decision making.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Child , Animals , Mice , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Receptor, Platelet-Derived Growth Factor alpha/genetics , Mutation , Receptor Protein-Tyrosine Kinases/genetics , T-Lymphocytes
6.
Cell Rep Methods ; 3(5): 100467, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37323575

ABSTRACT

Here, we present FusionInspector for in silico characterization and interpretation of candidate fusion transcripts from RNA sequencing (RNA-seq) and exploration of their sequence and expression characteristics. We applied FusionInspector to thousands of tumor and normal transcriptomes and identified statistical and experimental features enriched among biologically impactful fusions. Through clustering and machine learning, we identified large collections of fusions potentially relevant to tumor and normal biological processes. We show that biologically relevant fusions are enriched for relatively high expression of the fusion transcript, imbalanced fusion allelic ratios, and canonical splicing patterns, and are deficient in sequence microhomologies between partner genes. We demonstrate that FusionInspector accurately validates fusion transcripts in silico and helps characterize numerous understudied fusions in tumor and normal tissue samples. FusionInspector is freely available as open source for screening, characterization, and visualization of candidate fusions via RNA-seq, and facilitates transparent explanation and interpretation of machine-learning predictions and their experimental sources.


Subject(s)
High-Throughput Nucleotide Sequencing , Neoplasms , Humans , Neoplasms/genetics , Sequence Analysis, RNA , Transcriptome/genetics
7.
medRxiv ; 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36712083

ABSTRACT

IMPORTANCE: RCC encompasses a set of histologically distinct cancers with a high estimated genetic heritability, of which only a portion is currently explained. Previous rare germline variant studies in RCC have usually pooled clear and non-clear cell RCCs and have not adequately accounted for population stratification that may significantly impact the interpretation and discovery of certain candidate risk genes. OBJECTIVE: To evaluate the enrichment of germline PVs in established cancer-predisposing genes (CPGs) in clear cell and non-clear cell RCC patients compared to cancer-free controls using approaches that account for population stratification and to identify unconventional types of germline RCC risk variants that confer an increased risk of developing RCC. DESIGN SETTING AND PARTICIPANTS: In 1,436 unselected RCC patients with sufficient data quality, we systematically identified rare germline PVs, cryptic splice variants, and copy number variants (CNVs). From this unselected cohort, 1,356 patients were ancestry-matched with 16,512 cancer-free controls, and gene-level enrichment of rare germline PVs were assessed in 143 CPGs, followed by an investigation of somatic events in matching tumor samples. MAIN OUTCOMES AND MEASURES: Gene-level burden of rare germline PVs, identification of secondary somatic events accompanying the germline PVs, and characterization of less-explored types of rare germline PVs in RCC patients. RESULTS: In clear cell RCC (n = 976 patients), patients exhibited significantly higher prevalence of PVs in VHL compared to controls (OR: 39.1, 95% CI: 7.01-218.07, p-value:4.95e-05, q-value:0.00584). In non-clear cell RCC (n = 380 patients), patients carried enriched burden of PVs in FH (OR: 77.9, 95% CI: 18.68-324.97, p-value:1.55e-08, q-value: 1.83e-06) and MET (OR: 1.98e11, 95% CI: 0-inf, p-value: 2.07e-05, q-value: 3.50e-07). In a CHEK2-focused analysis with European cases and controls, clear cell RCC patients (n=906 European patients) harbored nominal enrichment of the previously reported low-penetrance CHEK2 variants, p.Ile157Thr (OR:1.84, 95% CI: 1.00-3.36, p-value:0.049) and p.Ser428Phe (OR:5.20, 95% CI: 1.00-26.40, p-value:0.045) while non-clear cell RCC patients (n=295 European patients) exhibited nominal enrichment of CHEK2 LOF germline PVs (OR: 3.51, 95% CI: 1.10-11.10, p-value: 0.033). RCC patients with germline PVs in FH, MET, and VHL exhibited significantly earlier age of cancer onset compared to patients without any germline PVs in CPGs (Mean: 46.0 vs 60.2 years old, Tukey adjusted p-value < 0.0001), and more than half had secondary somatic events affecting the same gene (n=10/15, 66.7%, 95% CI: 38.7-87.0%). Conversely, patients with rare germline PVs in CHEK2 exhibited a similar age of disease onset to patients without any identified germline PVs in CPGs (Mean: 60.1 vs 60.2 years old, Tukey adjusted p-value: 0.99), and only 30.4% of the patients carried secondary somatic events in CHEK2 (n=7/23, 95% CI: 14.1-53.0%). Finally, rare pathogenic germline cryptic splice variants underexplored in RCC were identified in SDHA and TSC1, and rare pathogenic germline CNVs were found in 18 patients, including CNVs in FH, SDHA, and VHL. CONCLUSIONS AND RELEVANCE: This systematic analysis supports the existing link between several RCC risk genes and elevated RCC risk manifesting in earlier age of RCC onset. Our analysis calls for caution when assessing the role of germline PVs in CHEK2 due to the burden of founder variants with varying population frequency in different ancestry groups. It also broadens the definition of the RCC germline landscape of pathogenicity to incorporate previously understudied types of germline variants, such as cryptic splice variants and CNVs.

8.
Am J Hum Genet ; 109(6): 1026-1037, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35512711

ABSTRACT

More knowledge is needed regarding germline predisposition to Ewing sarcoma to inform biological investigation and clinical practice. Here, we evaluated the enrichment of pathogenic germline variants in Ewing sarcoma relative to other pediatric sarcoma subtypes, as well as patterns of inheritance of these variants. We carried out European-focused and pan-ancestry case-control analyses to screen for enrichment of pathogenic germline variants in 141 established cancer predisposition genes in 1,147 individuals with pediatric sarcoma diagnoses (226 Ewing sarcoma, 438 osteosarcoma, 180 rhabdomyosarcoma, and 303 other sarcoma) relative to identically processed cancer-free control individuals. Findings in Ewing sarcoma were validated with an additional cohort of 430 individuals, and a subset of 301 Ewing sarcoma parent-proband trios was analyzed for inheritance patterns of identified pathogenic variants. A distinct pattern of pathogenic germline variants was seen in Ewing sarcoma relative to other sarcoma subtypes. FANCC was the only gene with an enrichment signal for heterozygous pathogenic variants in the European Ewing sarcoma discovery cohort (three individuals, OR 12.6, 95% CI 3.0-43.2, p = 0.003, FDR = 0.40). This enrichment in FANCC heterozygous pathogenic variants was again observed in the European Ewing sarcoma validation cohort (three individuals, OR 7.0, 95% CI 1.7-23.6, p = 0.014), representing a broader importance of genes involved in DNA damage repair, which were also nominally enriched in individuals with Ewing sarcoma. Pathogenic variants in DNA damage repair genes were acquired through autosomal inheritance. Our study provides new insight into germline risk factors contributing to Ewing sarcoma pathogenesis.


Subject(s)
Sarcoma, Ewing , Sarcoma , Child , DNA Damage/genetics , Genetic Predisposition to Disease , Germ Cells , Germ-Line Mutation/genetics , Humans , Sarcoma/genetics , Sarcoma, Ewing/genetics
9.
Cancer Res ; 81(15): 3971-3984, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34099491

ABSTRACT

Gene fusions frequently result from rearrangements in cancer genomes. In many instances, gene fusions play an important role in oncogenesis; in other instances, they are thought to be passenger events. Although regulatory element rearrangements and copy number alterations resulting from these structural variants are known to lead to transcriptional dysregulation across cancers, the extent to which these events result in functional dependencies with an impact on cancer cell survival is variable. Here we used CRISPR-Cas9 dependency screens to evaluate the fitness impact of 3,277 fusions across 645 cell lines from the Cancer Dependency Map. We found that 35% of cell lines harbored either a fusion partner dependency or a collateral dependency on a gene within the same topologically associating domain as a fusion partner. Fusion-associated dependencies revealed numerous novel oncogenic drivers and clinically translatable alterations. Broadly, fusions can result in partner and collateral dependencies that have biological and clinical relevance across cancer types. SIGNIFICANCE: This study provides insights into how fusions contribute to fitness in different cancer contexts beyond partner-gene activation events, identifying partner and collateral dependencies that may have direct implications for clinical care.


Subject(s)
Cell Survival/genetics , Gene Fusion/genetics , Neoplasms/genetics , Humans
10.
Pediatrics ; 144(1)2019 07.
Article in English | MEDLINE | ID: mdl-31227563

ABSTRACT

A 2-day old term male infant was found to be hypotonic and minimally reactive during routine nursing care in the newborn nursery. At 40 hours of life, he was hypoglycemic and had intermittent desaturations to 70%. His mother had an unremarkable pregnancy and spontaneous vaginal delivery. The mother's prenatal serology results were negative for infectious risk factors. Apgar scores were 9 at 1 and 5 minutes of life. On day 1 of life, he fed, stooled, and voided well. Our expert panel discusses the differential diagnosis of hypotonia in a neonate, offers diagnostic and management recommendations, and discusses the final diagnosis.


Subject(s)
Acyl-CoA Dehydrogenase, Long-Chain/deficiency , Congenital Bone Marrow Failure Syndromes/diagnosis , Lethargy/etiology , Lipid Metabolism, Inborn Errors/diagnosis , Mitochondrial Diseases/diagnosis , Muscle Hypotonia/etiology , Muscular Diseases/diagnosis , Congenital Bone Marrow Failure Syndromes/therapy , Diagnosis, Differential , Humans , Hypothermia/etiology , Infant, Newborn , Lipid Metabolism, Inborn Errors/therapy , Male , Mitochondrial Diseases/therapy , Muscular Diseases/therapy
11.
Methods Mol Biol ; 1768: 209-227, 2018.
Article in English | MEDLINE | ID: mdl-29717446

ABSTRACT

Breast cancer is the leading cause of cancer in women and the second leading cause of cancer-related death. There are many subtypes of breast cancer, which can be identified through the process of molecular and genetic profiling. While the current standard of care utilizes tumor tissue biopsy to subclassify breast cancer, plasma tumor DNA (ptDNA) can be detected through droplet digital PCR (ddPCR) of plasma obtained from a simple blood draw. Tissue biopsy is not only more invasive but because tumors exhibit heterogeneity it can be less accurate. Blood collects DNA shed from normal and cancerous cells alike, thus ddPCR of plasma offers a broader picture of a cancer's genetic makeup. This chapter summarizes how patients with breast cancer can be screened for specific cancerous mutations in both tissue and plasma through the use of ddPCR.


Subject(s)
Biomarkers, Tumor/isolation & purification , Breast Neoplasms/genetics , Breast/pathology , Circulating Tumor DNA/isolation & purification , Polymerase Chain Reaction/methods , Biomarkers, Tumor/genetics , Breast Neoplasms/blood , Breast Neoplasms/pathology , Circulating Tumor DNA/genetics , Female , Humans , Neoplasm Staging , Polymerase Chain Reaction/instrumentation , Specimen Handling/instrumentation , Specimen Handling/methods
13.
Clin Cancer Res ; 22(4): 993-9, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26261103

ABSTRACT

PURPOSE: Mutations in the estrogen receptor (ER)α gene, ESR1, have been identified in breast cancer metastases after progression on endocrine therapies. Because of limitations of metastatic biopsies, the reported frequency of ESR1 mutations may be underestimated. Here, we show a high frequency of ESR1 mutations using circulating plasma tumor DNA (ptDNA) from patients with metastatic breast cancer. EXPERIMENTAL DESIGN: We retrospectively obtained plasma samples from eight patients with known ESR1 mutations and three patients with wild-type ESR1 identified by next-generation sequencing (NGS) of biopsied metastatic tissues. Three common ESR1 mutations were queried for using droplet digital PCR (ddPCR). In a prospective cohort, metastatic tissue and plasma were collected contemporaneously from eight ER-positive and four ER-negative patients. Tissue biopsies were sequenced by NGS, and ptDNA ESR1 mutations were analyzed by ddPCR. RESULTS: In the retrospective cohort, all corresponding mutations were detected in ptDNA, with two patients harboring additional ESR1 mutations not present in their metastatic tissues. In the prospective cohort, three ER-positive patients did not have adequate tissue for NGS, and no ESR1 mutations were identified in tissue biopsies from the other nine patients. In contrast, ddPCR detected seven ptDNA ESR1 mutations in 6 of 12 patients (50%). CONCLUSIONS: We show that ESR1 mutations can occur at a high frequency and suggest that blood can be used to identify additional mutations not found by sequencing of a single metastatic lesion.


Subject(s)
Breast Neoplasms/genetics , DNA, Neoplasm/blood , Estrogen Receptor alpha/genetics , Liver Neoplasms/genetics , Adult , Aged , Breast Neoplasms/blood , Breast Neoplasms/pathology , DNA Mutational Analysis , DNA, Neoplasm/genetics , Female , Gene Frequency , Humans , Liver Neoplasms/blood , Liver Neoplasms/secondary , Middle Aged , Mutation, Missense
14.
Int J Nanomedicine ; 5: 1-11, 2010 Feb 02.
Article in English | MEDLINE | ID: mdl-20161983

ABSTRACT

Zirconia (ZrO(2)) and barium sulfate (BaSO(4)) particles were introduced into a methyl methacrylate monomer (MMA) solution with polymethyl methacrylate (PMMA) beads during polymerization to develop the following novel bone cements: bone cements with unfunctionalized ZrO(2) micron particles, bone cements with unfunctionalized ZrO(2) nanoparticles, bone cements with ZrO(2) nanoparticles functionalized with 3-(trimethoxysilyl)propyl methacrylate (TMS), bone cements with unfunctionalized BaSO(4) micron particles, bone cements with unfunctionalized BaSO(4) nanoparticles, and bone cements with BaSO(4) nanoparticles functionalized with TMS. Results demonstrated that in vitro osteoblast (bone-forming cell) densities were greater on bone cements containing BaSO(4) ceramic particles after four hours compared to control unmodified bone cements. Osteoblast densities were also greater on bone cements containing all of the ceramic particles after 24 hours compared to unmodified bone cements, particularly those bone cements containing nanofunctionalized ceramic particles. Bone cements containing ceramic particles demonstrated significantly altered mechanical properties; specifically, under tensile loading, plain bone cements and bone cements containing unfunctionalized ceramic particles exhibited brittle failure modes whereas bone cements containing nanofunctionalized ceramic particles exhibited plastic failure modes. Finally, all bone cements containing ceramic particles possessed greater radio-opacity than unmodified bone cements. In summary, the results of this study demonstrated a positive impact on the properties of traditional bone cements for orthopedic applications with the addition of unfunctionalized and TMS functionalized ceramic nanoparticles.


Subject(s)
Barium Sulfate/chemistry , Bone Cements/chemistry , Nanoparticles/chemistry , Osteoblasts/cytology , Osteoblasts/physiology , Zirconium/chemistry , Adhesiveness , Bone Cements/therapeutic use , Cell Line , Cell Survival , Compressive Strength , Hardness , Humans , Materials Testing , Nanoparticles/therapeutic use , Nanoparticles/ultrastructure , Particle Size , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...