Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Pediatrics ; 153(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38738290

ABSTRACT

OBJECTIVES: Human metapneumovirus (hMPV) and parainfluenza virus type 3 (PIV3) are common respiratory illnesses in children. The safety and immunogenicity of an investigational mRNA-based vaccine, mRNA-1653, encoding membrane-anchored fusion proteins of hMPV and PIV3, was evaluated in hMPV/PIV3-seropositive children. METHODS: In this phase 1b randomized, observer-blind, placebo-controlled, dose-ranging study, hMPV/PIV3-seropositive children were enrolled sequentially into 2 dose levels of mRNA-1653 administered 2 months apart; children aged 12 to 36 months were randomized (1:1) to receive 10-µg of mRNA-1653 or placebo and children aged 12 to 59 months were randomized (3:1) to receive 30-µg of mRNA-1653 or placebo. RESULTS: Overall, 27 participants aged 18 to 55 months were randomized; 15 participants received 10-µg of mRNA-1653 (n = 8) or placebo (n = 7), whereas 12 participants received 30-µg of mRNA-1653 (n = 9) or placebo (n = 3). mRNA-1653 was well-tolerated at both dose levels. The only reported solicited local adverse reaction was tenderness at injection site; solicited systemic adverse reactions included grade 1 or 2 chills, irritability, loss of appetite, and sleepiness. A single 10-µg or 30-µg mRNA-1653 injection increased hMPV and PIV3 neutralizing antibody titers (geometric mean fold-rise ratio over baseline: hMPV-A = 2.9-6.1; hMPV-B = 6.2-13.2; PIV3 = 2.8-3.0) and preF and postF binding antibody concentrations (geometric mean fold-rise ratio: hMPV preF = 5.3-6.1; postF = 4.6-6.5 and PIV3 preF = 13.9-14.2; postF = 11.0-12.1); a second injection did not further increase antibody levels in these seropositive children. Binding antibody responses were generally preF biased. CONCLUSIONS: mRNA-1653 was well-tolerated and boosted hMPV and PIV3 antibody levels in seropositive children aged 12 to 59 months, supporting the continued development of mRNA-1653 or its components for the prevention of hMPV and PIV3.


Subject(s)
Parainfluenza Virus 3, Human , Humans , Female , Male , Child, Preschool , Infant , Parainfluenza Virus 3, Human/immunology , Parainfluenza Virus 3, Human/genetics , Metapneumovirus/immunology , Metapneumovirus/genetics , Single-Blind Method , Paramyxoviridae Infections/prevention & control , Paramyxoviridae Infections/immunology , Antibodies, Viral/blood , Parainfluenza Vaccines/immunology , Parainfluenza Vaccines/administration & dosage , Parainfluenza Vaccines/genetics , Immunogenicity, Vaccine , RNA, Messenger
2.
Front Immunol ; 15: 1285278, 2024.
Article in English | MEDLINE | ID: mdl-38562934

ABSTRACT

Background: Characterizing the antibody epitope profiles of messenger RNA (mRNA)-based vaccines against SARS-CoV-2 can aid in elucidating the mechanisms underlying the antibody-mediated immune responses elicited by these vaccines. Methods: This study investigated the distinct antibody epitopes toward the SARS-CoV-2 spike (S) protein targeted after a two-dose primary series of mRNA-1273 followed by a booster dose of mRNA-1273 or a variant-updated vaccine among serum samples from clinical trial adult participants. Results: Multiple S-specific epitopes were targeted after primary vaccination; while signal decreased over time, a booster dose after >6 months largely revived waning antibody signals. Epitope identity also changed after booster vaccination in some subjects, with four new S-specific epitopes detected with stronger signals after boosting than with primary vaccination. Notably, the strength of antibody responses after booster vaccination differed by the exact vaccine formulation, with variant-updated mRNA-1273.211 and mRNA-1273.617.2 booster formulations inducing significantly stronger S-specific signals than a mRNA-1273 booster. Conclusion: Overall, these results identify key S-specific epitopes targeted by antibodies induced by mRNA-1273 primary and variant-updated booster vaccination.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , COVID-19 Vaccines , Adult , Humans , Antibodies , Vaccination , Epitopes , RNA, Messenger/genetics , SARS-CoV-2 , mRNA Vaccines
3.
Lancet Infect Dis ; 24(7): 687-697, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38518789

ABSTRACT

BACKGROUND: Variant-containing mRNA vaccines for COVID-19 to broaden protection against SARS-CoV-2 variants are recommended based on findings in adults. We report interim safety and immunogenicity of an omicron BA.1 variant-containing (mRNA-1273.214) primary vaccination series and booster dose in paediatric populations. METHODS: This open-label, two-part, non-randomised phase 3 trial enrolled participants aged 6 months to 5 years at 24 US study sites. Eligible participants were generally healthy or had stable chronic conditions, without known SARS-CoV-2 infection in the previous 90 days. Individuals who were acutely ill or febrile 1 day before or at the screening visit or those who previously received other COVID-19 vaccines (except mRNA-1273 for part 2) were excluded. In part 1, SARS-CoV-2-vaccine-naive participants received two-dose mRNA-1273.214 (25 µg; omicron BA.1 and ancestral Wuhan-Hu-1 mRNA) primary series. In part 2, participants who previously completed the two-dose mRNA-1273 (25 µg) primary series in KidCOVE (NCT04796896) received a mRNA-1273.214 (10 µg) booster dose. Primary study outcomes were safety and reactogenicity of the mRNA-1273.214 primary series (part 1) or booster dose (part 2) as well as the inferred effectiveness of mRNA-1273.214 based on immune responses against ancestral SARS-CoV-2 (D614G) and omicron BA.1 variant at 28 days post-primary series (part 1) or post-booster dose (part 2). The safety set included participants who received at least one dose of the study vaccine; the immunogenicity set included those who provided immunogenicity samples. Interim safety and immunogenicity are summarised in this analysis as of the data cutoff date (Dec 5, 2022). This trial is registered with ClinicalTrials.gov, NCT05436834. FINDINGS: Between June 21, 2022, and Dec 5, 2022, 179 participants received one or more doses of mRNA-1273.214 primary series (part 1) and 539 received a mRNA-1273.214 booster dose (part 2). The safety profile within 28 days after either dose of the mRNA-1273.214 primary series and the booster dose was consistent with that of the mRNA-1273 primary series in this age group, with no new safety concerns or vaccine-related serious adverse events observed. At 28 days after primary series dose 2 and the booster dose, both mRNA-1273.214 primary series (day 57, including all participants with or without evidence of prior SARS-CoV-2 infection at baseline) and booster (day 29, including participants without evidence of prior SARS-CoV-2 infection at baseline) elicited responses that were superior against omicron-BA.1 (geometric mean ratio part 1: 25·4 [95% CI 20·1-32·1] and part 2: 12·5 [11·0-14·3]) and non-inferior against D614G (part 1: 0·8 [0·7-1·0] and part 2: 3·1 [2·8-3·5]), compared with neutralising antibody responses induced by the mRNA-1273 primary series (in a historical comparator group). INTERPRETATION: mRNA-1273.214 was immunogenic against BA.1 and D614G in children aged 6 months to 5 years, with a comparable safety profile to mRNA-1273, when given as a two-dose primary series or a booster dose. These results are aligned with the US Centers for Disease Control and Prevention recommendations for the use of variant-containing vaccines for continued protection against the emerging variants of SARS-CoV-2. FUNDING: Moderna.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Immunogenicity, Vaccine , SARS-CoV-2 , Humans , COVID-19/prevention & control , COVID-19/immunology , Male , Female , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Child, Preschool , Infant , COVID-19 Vaccines/immunology , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/administration & dosage , 2019-nCoV Vaccine mRNA-1273/immunology , Antibodies, Viral/blood , United States , Antibodies, Neutralizing/blood , Vaccination/methods
4.
J Infect Dis ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38513368

ABSTRACT

BACKGROUND: Immunosuppressed individuals, including solid organ transplant recipients (SOTRs), are at high risk for severe COVID-19. METHODS: This open-label, phase 3b trial evaluated mRNA-1273 in 137 adult kidney and 77 liver SOTRs and 20 immunocompetent participants. In Part A, SOTRs received three 100-µg doses of mRNA-1273; immunocompetent participants received 2 doses. In Part B, an additional 100-µg dose was offered ≥4 months post-primary series. Here, we report interim trial results. RESULTS: mRNA-1273 was well-tolerated in SOTRs. Four serious adverse events were considered vaccine-related by the investigator in 3 SOTRs with pre-existing comorbidities. No vaccine-related biopsy-proven organ rejection events or deaths were reported. mRNA-1273 elicited modest neutralizing antibody (nAb) responses after dose 2 and improved responses after dose 3 in SOTRs. Post-dose 3 responses among liver SOTRs were comparable to post-dose 2 responses in immunocompetent participants. Post-additional dose responses were increased in SOTRs regardless of the primary series vaccination. In liver SOTRs, post-additional dose responses were ∼3-fold higher versus post-dose 2 but were lower than immunocompetent participant responses. Most kidney SOTRs received multiple immunosuppressants and had reduced antibody responses versus liver SOTRs. CONCLUSIONS: mRNA-1273 (100 µg) was well-tolerated and dose 3 and the additional dose improved antibody responses among SOTRs.

5.
J Infect Dis ; 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38349280

ABSTRACT

BACKGROUND: Monovalent Omicron XBB.1.5-containing vaccines were approved for Coronavirus disease 2019 (COVID-19) 2023-2024 immunizations. METHODS: This ongoing, open-label, phase 2/3 study evaluated mRNA-1273.815-monovalent (50-µg Omicron XBB.1.5-spike mRNA) and mRNA-1273.231-bivalent (25-µg each Omicron XBB.1.5- and BA.4/BA.5-spike mRNAs))vaccines, administered as 5th doses to adults who previously received a primary series, a 3rd dose of an original mRNA COVID-19 vaccine, and a 4th dose of an Omicron BA.4/BA.5 bivalent vaccine. Interim safety and immunogenicity results 29 days post-vaccination are reported. RESULTS: Participants (randomized 1:1) received 50-µg mRNA-1273.815(n=50) or mRNA-1273.231(n=51); median (interquartile range) months from the prior BA.4/BA.5-bivalent dose were 8.2 (8.1-8.3) and 8.3 (8.1-8.4), respectively. Neutralizing antibody (nAb) increased from pre-booster levels against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants tested. Day 29 nAb fold-increases from pre-booster levels were numerically higher against XBB.1.5, XBB.1.16, EG.5.1, BA.2.86, and JN.1 than BA.4/BA.5, BQ.1.1 and D614G. The monovalent vaccine also cross-neutralized FL.1.5.1, EG.5.1, BA.2.86, HK.3.1, HV.1 and JN.1 variants in a participant (n=20) subset, 15 days post-vaccination. Reactogenicity was similar to previously reported mRNA-1273 original and bivalent vaccines. CONCLUSIONS: XBB.1.5-containing mRNA-1273 vaccines elicit robust, diverse nAb responses against more recent SARS-CoV-2 variants including JN.1, supporting the XBB.1.5-spike sequence selection for the 2023-2024 COVID-19 vaccine update.

6.
bioRxiv ; 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37645950

ABSTRACT

A series of SARS-CoV-2 variants emerged during the pandemic under selection for neutralization resistance. Convalescent and vaccinated sera show consistently different cross-neutralization profiles depending on infecting or vaccine variants. To understand the basis of this heterogeneity, we modeled serum cross-neutralization titers for 165 sera after infection or vaccination with historically prominent lineages tested against 18 variant pseudoviruses. Cross-neutralization profiles were well captured by models incorporating autologous neutralizing titers and combinations of specific shared and differing mutations between the infecting/vaccine variants and pseudoviruses. Infecting/vaccine variant-specific models identified mutations that significantly impacted cross-neutralization and quantified their relative contributions. Unified models that explained cross-neutralization profiles across all infecting and vaccine variants provided accurate predictions of holdout neutralization data comprising untested variants as infecting or vaccine variants, and as test pseudoviruses. Finally, comparative modeling of 2-dose versus 3-dose mRNA-1273 vaccine data revealed that the third dose overcame key resistance mutations to improve neutralization breadth. HIGHLIGHTS: Modeled SARS-CoV-2 cross-neutralization using mutations at key sitesIdentified resistance mutations and quantified relative impactAccurately predicted holdout variant and convalescent/vaccine sera neutralizationShowed that the third dose of mRNA-1273 vaccination overcomes resistance mutations.

7.
Nat Med ; 29(9): 2325-2333, 2023 09.
Article in English | MEDLINE | ID: mdl-37653342

ABSTRACT

This ongoing, open-label, phase 2/3 trial compared the safety and immunogenicity of the Omicron BA.4/BA.5-containing bivalent mRNA-1273.222 vaccine with the ancestral Wuhan-Hu-1 mRNA-1273 as booster doses. Two groups of adults who previously received mRNA-1273 as primary vaccination series and booster doses were enrolled in a sequential, nonrandomized manner and received single-second boosters of mRNA-1273 (n = 376) or bivalent mRNA-1273.222 (n = 511). Primary objectives were safety and the noninferiority or superiority of neutralizing antibody (nAb) responses against Omicron BA.4/BA.5 and ancestral SARS-CoV-2 with the D614G mutation (ancestral SARS-CoV-2 (D614G)), 28 days post boost. Superiority and noninferiority were based on prespecified success criteria (lower bounds of 95% CI > 1 and < 0.677, respectively) of the mRNA-1273.222:mRNA-1273 geometric mean ratios. Bivalent Omicron BA.4/BA.5-containing mRNA-1273.222 elicited superior nAb responses against BA.4/BA.5 versus mRNA-1273 and noninferior responses against ancestral SARS-CoV-2 (D614G) at day 29 post boost in participants without detectable prior SARS-CoV-2 infection. Day 29 seroresponses against Omicron BA.4/BA.5 were higher for mRNA-1273.222 than for mRNA-1273 and similar against ancestral SARS-CoV-2 (D614G), both meeting noninferiority criterion. The safety profile of mRNA-1273.222 was similar to that previously reported for mRNA-1273 with no new safety concerns identified. Continued monitoring of neutralization and real-world vaccine effectiveness are needed as additional divergent-virus variants emerge. ClinicalTrials.gov registration: NCT04927065.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Neutralizing , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , mRNA Vaccines , SARS-CoV-2/genetics
8.
Nat Commun ; 14(1): 5125, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37612300

ABSTRACT

We previously presented day 29 interim safety and immunogenicity results from a phase 2/3 study (NCT04927065) comparing the Omicron-BA.1-containing bivalent vaccine mRNA-1273.214 (50-µg) to the 50-µg mRNA-1273 booster in adults who previously received the mRNA-1273 primary series (100-µg) and mRNA-1273 first booster (50-µg) dose. Primary endpoints were safety, non-inferiority of the neutralizing antibody (nAb) and seroresponse against Omicron BA.1, superiority of the nAb response against Omicron-BA.1, and non-inferiority of the nAb response against ancestral SARS-CoV-2 for second boosters of mRNA-1273.214 versus mRNA-1273 at days 29 and 91. The key secondary endpoint was the seroresponse difference of mRNA-1273.214 versus mRNA-1273 against ancestral SARS-CoV-2 at days 29 and day 91. Participants were sequentially enrolled and dosed with 50-µg of mRNA-1273 (n = 376) or mRNA-1273.214 (n = 437) as second booster doses. Here we present day 91 post-booster results. In participants with no pre-booster, severe acute respiratory syndrome coronavirus 2-infection (SARS-CoV-2), mRNA-1273.214 elicited Omicron-BA.1-nAb titers (95% confidence interval [CI]) that were significantly higher (964.4 [834.4-1114.7]) than those of mRNA-1273 (624.2 [533.1-730.9]) and similar to those of mRNA-1273 against ancestral SARS-CoV-2 at day 91. mRNA-1273.214 also induced higher binding antibody responses against Omicron BA.1 and alpha, gamma and delta variants than mRNA-1273. Safety profiles were similar for both vaccines. The Omicron-BA.1 bivalent vaccine improved antibody responses compared to mRNA-1273 through 90 days post-booster.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Neutralizing , COVID-19/prevention & control , SARS-CoV-2 , Vaccines, Combined , Clinical Trials, Phase II as Topic , Clinical Trials, Phase III as Topic
9.
Lancet Infect Dis ; 23(9): 1007-1019, 2023 09.
Article in English | MEDLINE | ID: mdl-37348519

ABSTRACT

BACKGROUND: The omicron BA.1 bivalent booster is used globally. Previous open-label studies of the omicron BA.1 (Moderna mRNA-1273.214) booster showed superior neutralising antibody responses against omicron BA.1 and other variants compared with the original mRNA-1273 booster. We aimed to compare the safety and immunogenicity of omicron BA.1 monovalent and bivalent boosters with the original mRNA-1273 vaccine in a large, randomised controlled trial. METHODS: In this large, randomised, observer-blind, active-controlled, phase 3 trial in the UK (28 hospital and vaccination clinic sites), individuals aged 16 years or older who had previously received two injections of any authorised or approved COVID-19 vaccine, with or without an mRNA vaccine booster (third dose), were randomly allocated (1:1) using interactive response technology to receive 50 µg omicron BA.1 monovalent or bivalent vaccines or 50 µg mRNA-1273 administered as boosters via deltoid intramuscular injection. The primary outcomes were safety and immunogenicity at day 29, including prespecified non-inferiority and superiority of booster immune responses, based on the neutralising antibody geometric mean concentration (GMC) ratios of the monovalent and bivalent boosters compared with mRNA-1273. Safety was assessed in all participants who received first or second boosters, and primary immunogenicity outcomes were assessed in all participants who received the planned booster dose, had pre-booster and day 29 antibody data, had no major protocol deviations, and who were SARS-CoV-2-negative. The study is registered with EudraCT (2022-000063-51) and ClinicalTrials.gov (NCT05249829) and is ongoing. FINDINGS: Between Feb 16 and March 24, 2022, 724 participants were randomly allocated to receive omicron BA.1 monovalent (n=366) or mRNA-1273 (n=357), and between April 2 and June 17, 2022, 2824 participants were randomly allocated to receive omicron BA.1 bivalent (n=1418) or mRNA-1273 (n=1395) vaccines as second boosters. Median durations (months) between the most recent COVID-19 vaccine and study boosters were similar for omicron BA.1 monovalent (4·0 months [IQR 3·6-4·7]) and mRNA-1273 (4·1 [3·5-4·7]), and for the omicron BA.1 bivalent (5·5 [4·8-6·2]) and mRNA-1273 (5·4 [4·8-6·2]) boosters. The omicron BA.1 monovalent and bivalent boosters elicited superior neutralising GMCs against the omicron BA.1 variant compared with mRNA-1273, with GMC ratios of 1·68 (99% CI 1·45-1·95) and 1·53 (1·41-1·67) at day 29 post-booster doses in participants without previous SARS-CoV-2 infection. Both boosters induced non-inferior ancestral SARS-CoV-2 (Asp614Gly) immune responses with GMCs that were similar for the bivalent (2987·2 [95% CI 2814·9-3169·9]) versus mRNA-1273 (2911·3 [2750·9-3081·0]) and lower for the monovalent (2699·7 [2431·3-2997·7] vs 3020·6 [2776·5-3286·2]) boosters, with respective GMC ratios of 1·05 (99% CI 0·96-1·15) and 0·82 (95% CI 0·74-0·91). Results were comparable regardless of previous SARS-CoV-2 infection status. Incidences of solicited adverse reactions with the omicron BA.1 monovalent (335 [91·3%] of 367 participants) and omicron BA.1 bivalent (1285 [90·4%] of 1421 participants) boosters were similar to those observed previously for mRNA-1273, with no new safety concerns identified and no occurrences of fatal adverse events. INTERPRETATION: Omicron-containing booster vaccines generated superior immunogenicity against omicron BA.1 and comparable immunogenicity against the original strain with no new safety concerns. It remains important to continuously monitor the immune responses and real-world vaccine effectiveness as divergent SARS-CoV-2 variants emerge. FUNDING: Moderna.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , 2019-nCoV Vaccine mRNA-1273 , COVID-19/prevention & control , SARS-CoV-2/genetics , Antibodies, Neutralizing , United Kingdom , Immunogenicity, Vaccine , Antibodies, Viral
11.
Nat Med ; 28(11): 2388-2397, 2022 11.
Article in English | MEDLINE | ID: mdl-36202997

ABSTRACT

Updated immunization strategies are needed to address multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. Here we report interim results from an ongoing, open-label phase 2/3 trial evaluating the safety and immunogenicity of the bivalent Coronavirus Disease 2019 (COVID-19) vaccine candidate mRNA-1273.211, which contains equal mRNA amounts encoding the ancestral SARS-CoV-2 and Beta variant spike proteins, as 50-µg (n = 300) and 100-µg (n = 595) first booster doses administered approximately 8.7-9.7 months after the mRNA-1273 primary vaccine series ( NCT04927065 ). The primary objectives were to evaluate the safety and reactogenicity of mRNA-1273.211 and to demonstrate non-inferior antibody responses compared to the mRNA-1273 100-µg primary series. Additionally, a pre-specified immunogenicity objective was to demonstrate superior antibody responses compared to the previously authorized mRNA-1273 50-µg booster. The mRNA-1273.211 booster doses (50-µg or 100-µg) 28 days after immunization elicited higher neutralizing antibody responses against the ancestral SARS-CoV-2 and Beta variant than those elicited 28 days after the second mRNA­1273 dose of the primary series ( NCT04470427 ). Antibody responses 28 days and 180 days after the 50-µg mRNA-1273.211 booster dose were also higher than those after a 50-µg mRNA-1273 booster dose ( NCT04405076 ) against the ancestral SARS-CoV-2 and Beta, Omicron BA.1 and Delta variants, and all pre-specified immunogenicity objectives were met. The safety and reactogenicity profile of the bivalent mRNA-1273.211 booster (50-µg) was similar to the booster dose of mRNA-1273 (50-µg). Immunization with the primary series does not set a ceiling to the neutralizing antibody response, and a booster dose of the bivalent vaccine elicits a robust response with titers that are likely to be protective against COVID-19. These results indicate that bivalent booster vaccines can induce potent, durable and broad antibody responses against multiple variants, providing a new tool in response to emerging variants.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , SARS-CoV-2 , Vaccines, Combined , Antibodies, Neutralizing , Antibodies, Viral , Immunogenicity, Vaccine
12.
N Engl J Med ; 387(18): 1673-1687, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36260859

ABSTRACT

BACKGROUND: The safety, reactogenicity, immunogenicity, and efficacy of the mRNA-1273 coronavirus disease 2019 (Covid-19) vaccine in young children are unknown. METHODS: Part 1 of this ongoing phase 2-3 trial was open label for dose selection; part 2 was an observer-blinded, placebo-controlled evaluation of the selected dose. In part 2, we randomly assigned young children (6 months to 5 years of age) in a 3:1 ratio to receive two 25-µg injections of mRNA-1273 or placebo, administered 28 days apart. The primary objectives were to evaluate the safety and reactogenicity of the vaccine and to determine whether the immune response in these children was noninferior to that in young adults (18 to 25 years of age) in a related phase 3 trial. Secondary objectives were to determine the incidences of Covid-19 and severe acute respiratory syndrome coronavirus 2 infection after administration of mRNA-1273 or placebo. RESULTS: On the basis of safety and immunogenicity results in part 1 of the trial, the 25-µg dose was evaluated in part 2. In part 2, 3040 children 2 to 5 years of age and 1762 children 6 to 23 months of age were randomly assigned to receive two 25-µg injections of mRNA-1273; 1008 children 2 to 5 years of age and 593 children 6 to 23 months of age were randomly assigned to receive placebo. The median duration of follow-up after the second injection was 71 days in the 2-to-5-year-old cohort and 68 days in the 6-to-23-month-old cohort. Adverse events were mainly low-grade and transient, and no new safety concerns were identified. At day 57, neutralizing antibody geometric mean concentrations were 1410 (95% confidence interval [CI], 1272 to 1563) among 2-to-5-year-olds and 1781 (95% CI, 1616 to 1962) among 6-to-23-month-olds, as compared with 1391 (95% CI, 1263 to 1531) among young adults, who had received 100-µg injections of mRNA-1273, findings that met the noninferiority criteria for immune responses for both age cohorts. The estimated vaccine efficacy against Covid-19 was 36.8% (95% CI, 12.5 to 54.0) among 2-to-5-year-olds and 50.6% (95% CI, 21.4 to 68.6) among 6-to-23-month-olds, at a time when B.1.1.529 (omicron) was the predominant circulating variant. CONCLUSIONS: Two 25-µg doses of the mRNA-1273 vaccine were found to be safe in children 6 months to 5 years of age and elicited immune responses that were noninferior to those in young adults. (Funded by the Biomedical Advanced Research and Development Authority and National Institute of Allergy and Infectious Diseases; KidCOVE ClinicalTrials.gov number, NCT04796896.).


Subject(s)
2019-nCoV Vaccine mRNA-1273 , COVID-19 , Immunogenicity, Vaccine , Child , Child, Preschool , Humans , Infant , Young Adult , 2019-nCoV Vaccine mRNA-1273/immunology , 2019-nCoV Vaccine mRNA-1273/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/epidemiology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Double-Blind Method , Immunogenicity, Vaccine/immunology , Vaccine Efficacy , Treatment Outcome , Adolescent , Adult
13.
N Engl J Med ; 387(14): 1279-1291, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36112399

ABSTRACT

BACKGROUND: The safety and immunogenicity of the bivalent omicron-containing mRNA-1273.214 booster vaccine are not known. METHODS: In this ongoing, phase 2-3 study, we compared the 50-µg bivalent vaccine mRNA-1273.214 (25 µg each of ancestral Wuhan-Hu-1 and omicron B.1.1.529 [BA.1] spike messenger RNAs) with the previously authorized 50-µg mRNA-1273 booster. We administered mRNA-1273.214 or mRNA-1273 as a second booster in adults who had previously received a two-dose (100-µg) primary series and first booster (50-µg) dose of mRNA-1273 (≥3 months earlier). The primary objectives were to assess the safety, reactogenicity, and immunogenicity of mRNA-1273.214 at 28 days after the booster dose. RESULTS: Interim results are presented. Sequential groups of participants received 50 µg of mRNA-1273.214 (437 participants) or mRNA-1273 (377 participants) as a second booster dose. The median time between the first and second boosters was similar for mRNA-1273.214 (136 days) and mRNA-1273 (134 days). In participants with no previous severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the geometric mean titers of neutralizing antibodies against the omicron BA.1 variant were 2372.4 (95% confidence interval [CI], 2070.6 to 2718.2) after receipt of the mRNA-1273.214 booster and 1473.5 (95% CI, 1270.8 to 1708.4) after receipt of the mRNA-1273 booster. In addition, 50-µg mRNA-1273.214 and 50-µg mRNA-1273 elicited geometric mean titers of 727.4 (95% CI, 632.8 to 836.1) and 492.1 (95% CI, 431.1 to 561.9), respectively, against omicron BA.4 and BA.5 (BA.4/5), and the mRNA-1273.214 booster also elicited higher binding antibody responses against multiple other variants (alpha, beta, gamma, and delta) than the mRNA-1273 booster. Safety and reactogenicity were similar with the two booster vaccines. Vaccine effectiveness was not assessed in this study; in an exploratory analysis, SARS-CoV-2 infection occurred in 11 participants after the mRNA-1273.214 booster and in 9 participants after the mRNA-1273 booster. CONCLUSIONS: The bivalent omicron-containing vaccine mRNA-1273.214 elicited neutralizing antibody responses against omicron that were superior to those with mRNA-1273, without evident safety concerns. (Funded by Moderna; ClinicalTrials.gov number, NCT04927065.).


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Vaccines, Combined , mRNA Vaccines , 2019-nCoV Vaccine mRNA-1273/immunology , 2019-nCoV Vaccine mRNA-1273/therapeutic use , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Humans , Immunogenicity, Vaccine/immunology , SARS-CoV-2 , Vaccines, Combined/immunology , Vaccines, Combined/therapeutic use , mRNA Vaccines/immunology , mRNA Vaccines/therapeutic use
15.
Ann Intern Med ; 175(9): 1258-1265, 2022 09.
Article in English | MEDLINE | ID: mdl-35785530

ABSTRACT

BACKGROUND: Immunoassays for determining past SARS-CoV-2 infection have not been systematically evaluated in vaccinated persons in comparison with unvaccinated persons. OBJECTIVE: To evaluate antinucleocapsid antibody (anti-N Ab) seropositivity in mRNA-1273 (Moderna) vaccinees with breakthrough SARS-CoV-2 infection. DESIGN: Nested substudy of a phase 3 randomized, double-blind, placebo-controlled vaccine efficacy trial. (ClinicalTrials.gov: NCT04470427). SETTING: 99 sites in the United States, July 2020 through March 2021. PARTICIPANTS: Participants were aged 18 years or older, had no known history of SARS-CoV-2 infection, and were at risk for SARS-CoV-2 infection or severe COVID-19. Substudy participants were diagnosed with SARS-CoV-2 infection during the trial's blinded phase. INTERVENTION: 2 mRNA-1273 or placebo injections 28 days apart. MEASUREMENTS: Nasopharyngeal swabs from days 1 and 29 (vaccination days) and from symptom-prompted illness visits were tested for SARS-CoV-2 via polymerase chain reaction (PCR). Serum samples from days 1, 29, and 57 and the participant decision visit (PDV, when participants were informed of treatment assignment; median day 149) were tested for anti-N Abs by the Elecsys immunoassay. RESULTS: Among 812 participants with PCR-confirmed COVID-19 illness during the blinded phase of the trial (through March 2021), seroconversion to anti-N Abs (median of 53 days after diagnosis) occurred in 21 of 52 mRNA-1273 vaccinees (40% [95% CI, 27% to 54%]) versus 605 of 648 placebo recipients (93% [CI, 92% to 95%]). Each 1-log increase in SARS-CoV-2 viral copies at diagnosis was associated with 90% higher odds of anti-N Ab seroconversion (odds ratio, 1.90 [CI, 1.59 to 2.28]). LIMITATION: The scope was restricted to mRNA-1273 vaccinees and the Elecsys assay, the sample size was small, data on Delta and Omicron infections were lacking, and the analysis did not address a prespecified objective of the trial. CONCLUSION: Vaccination status should be considered when interpreting seroprevalence and seropositivity data based solely on anti-N Ab testing. PRIMARY FUNDING SOURCE: National Institute of Allergy and Infectious Diseases of the National Institutes of Health.


Subject(s)
COVID-19 , 2019-nCoV Vaccine mRNA-1273 , COVID-19/prevention & control , COVID-19 Vaccines , Double-Blind Method , Humans , SARS-CoV-2 , Seroepidemiologic Studies , United States , Vaccine Efficacy
16.
J Infect Dis ; 226(10): 1731-1742, 2022 11 11.
Article in English | MEDLINE | ID: mdl-35535503

ABSTRACT

BACKGROUND: Messenger RNA (mRNA)-1273 vaccine demonstrated 93.2% efficacy against coronavirus disease 2019 (COVID-19) in the Coronavirus Efficacy (COVE) trial. The humoral immunogenicity results are now reported. METHODS: Participants received 2 mRNA-1273 (100 µg) or placebo injections, 28 days apart. Immune responses were evaluated in a prespecified, randomly selected per-protocol immunogenicity population (n = 272 placebo; n = 1185 mRNA-1273). Serum binding antibodies (bAbs) and neutralizing antibodies (nAbs) to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-spike protein were assessed at days 1, 29, and 57 by baseline SARS-CoV-2-negative (n = 1197) and SARS-CoV-2-positive (n = 260) status, age, and sex. RESULTS: SARS-CoV-2-negative vaccinees had bAb geometric mean AU/mL levels of 35 753 at day 29 that increased to 316 448 at day 57 and nAb inhibitory dilution 50% titers of 55 at day 29 that rose to 1081 at day 57. In SARS-CoV-2-positive vacinees, the first mRNA-1273 injection elicited bAb and nAb levels that were 11-fold (410 049) and 27-fold (1479) higher than in SARS-CoV-2-negative vaccinees, respectively, and were comparable to levels after 2 injections in uninfected participants. Findings were generally consistent by age and sex. CONCLUSIONS: mRNA-1273 elicited robust serologic immune responses across age, sex, and SARS-CoV-2 status, consistent with its high COVID-19 efficacy. Higher immune responses in those previously infected support a booster-type effect. Clinical Trials Registration. NCT04470427.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Immunogenicity, Vaccine , RNA, Messenger , Spike Glycoprotein, Coronavirus
17.
N Engl J Med ; 386(21): 2011-2023, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35544369

ABSTRACT

BACKGROUND: Vaccination of children to prevent coronavirus disease 2019 (Covid-19) is an urgent public health need. The safety, immunogenicity, and efficacy of the mRNA-1273 vaccine in children 6 to 11 years of age are unknown. METHODS: Part 1 of this ongoing phase 2-3 trial was open label for dose selection; part 2 was an observer-blinded, placebo-controlled expansion evaluation of the selected dose. In part 2, we randomly assigned children (6 to 11 years of age) in a 3:1 ratio to receive two injections of mRNA-1273 (50 µg each) or placebo, administered 28 days apart. The primary objectives were evaluation of the safety of the vaccine in children and the noninferiority of the immune response in these children to that in young adults (18 to 25 years of age) in a related phase 3 trial. Secondary objectives included determination of the incidences of confirmed Covid-19 and severe acute respiratory syndrome coronavirus 2 infection, regardless of symptoms. Interim analysis results are reported. RESULTS: In part 1 of the trial, 751 children received 50-µg or 100-µg injections of the mRNA-1273 vaccine, and on the basis of safety and immunogenicity results, the 50-µg dose level was selected for part 2. In part 2 of the trial, 4016 children were randomly assigned to receive two injections of mRNA-1273 (50 µg each) or placebo and were followed for a median of 82 days (interquartile range, 14 to 94) after the first injection. This dose level was associated with mainly low-grade, transient adverse events, most commonly injection-site pain, headache, and fatigue. No vaccine-related serious adverse events, multisystem inflammatory syndrome in children, myocarditis, or pericarditis were reported as of the data-cutoff date. One month after the second injection (day 57), the neutralizing antibody titer in children who received mRNA-1273 at a 50-µg level was 1610 (95% confidence interval [CI], 1457 to 1780), as compared with 1300 (95% CI, 1171 to 1443) at the 100-µg level in young adults, with serologic responses in at least 99.0% of the participants in both age groups, findings that met the prespecified noninferiority success criterion. Estimated vaccine efficacy was 88.0% (95% CI, 70.0 to 95.8) against Covid-19 occurring 14 days or more after the first injection, at a time when B.1.617.2 (delta) was the dominant circulating variant. CONCLUSIONS: Two 50-µg doses of the mRNA-1273 vaccine were found to be safe and effective in inducing immune responses and preventing Covid-19 in children 6 to 11 years of age; these responses were noninferior to those in young adults. (Funded by the Biomedical Advanced Research and Development Authority and the National Institute of Allergy and Infectious Diseases; KidCOVE ClinicalTrials.gov number, NCT04796896.).


Subject(s)
2019-nCoV Vaccine mRNA-1273 , COVID-19 , 2019-nCoV Vaccine mRNA-1273/adverse effects , 2019-nCoV Vaccine mRNA-1273/immunology , 2019-nCoV Vaccine mRNA-1273/therapeutic use , Adolescent , Adult , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/complications , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/therapeutic use , Child , Double-Blind Method , Humans , SARS-CoV-2 , Systemic Inflammatory Response Syndrome , Vaccine Efficacy , Young Adult
18.
Front Immunol ; 13: 861670, 2022.
Article in English | MEDLINE | ID: mdl-35401514

ABSTRACT

Sepsis is a systemic immune response to infection that is responsible for ~35% of in-hospital deaths and over 24 billion dollars in annual treatment costs. Strategic targeting of non-redundant negative immune checkpoint protein pathways can cater therapeutics to the individual septic patient and improve prognosis. B7-CD28 superfamily member V-domain Immunoglobulin Suppressor of T cell Activation (VISTA) is an ideal candidate for strategic targeting in sepsis. We hypothesized that immune checkpoint regulator, VISTA, controls T-regulatory cells (Treg), in response to septic challenge, thus playing a protective role/reducing septic morbidity/mortality. Further, we investigated if changes in morbidity/mortality are due to a Treg-mediated effect during the acute response to septic challenge. To test this, we used the cecal ligation and puncture model as a proxy for polymicrobial sepsis and assessed the phenotype of CD4+ Tregs in VISTA-gene deficient (VISTA-/-) and wild-type mice. We also measured changes in survival, soluble indices of tissue injury, and circulating cytokines in the VISTA-/- and wild-type mice. We found that in wild-type mice, CD4+ Tregs exhibit a significant upregulation of VISTA which correlates with higher Treg abundance in the spleen and small intestine following septic insult. However, VISTA-/- mice have reduced Treg abundance in these compartments met with a higher expression of Foxp3, CTLA4, and CD25 compared to wild-type mice. VISTA-/- mice also have a significant survival deficit, higher levels of soluble indicators of liver injury (i.e., ALT, AST, bilirubin), and increased circulating proinflammatory cytokines (i.e., IL-6, IL-10, TNFα, IL-17F, IL-23, and MCP-1) following septic challenge. To elucidate the role of Tregs in VISTA-/- sepsis mortality, we adoptively transferred VISTA-expressing Tregs into VISTA-/- mice. This adoptive transfer rescued VISTA-/- survival to wild-type levels. Taken together, we propose a protective Treg-mediated role for VISTA by which inflammation-induced tissue injury is suppressed and improves survival in early-stage murine sepsis. Thus, enhancing VISTA expression or adoptively transferring VISTA+ Tregs in early-stage sepsis may provide a novel therapeutic approach to ameliorate inflammation-induced death.


Subject(s)
Immune Checkpoint Proteins , Sepsis , Animals , Cytokines/metabolism , Humans , Inflammation , Mice , T-Lymphocytes, Regulatory
19.
Nat Med ; 28(5): 1042-1049, 2022 05.
Article in English | MEDLINE | ID: mdl-35241844

ABSTRACT

Rising breakthrough infections of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in previously immunized individuals have raised concerns for the need for a booster vaccine dose to combat waning antibody levels and new variants. Here we report the results of the open-label, non-randomized part B of a phase 2 trial in which we evaluated the safety and immunogenicity of a booster injection of 50 µg of the coronavirus disease 2019 (COVID-19) vaccine mRNA-1273 in 344 adult participants immunized 6-8 months earlier with a primary series of two doses of 50 µg or 100 µg of mRNA-1273 ( NCT04405076 ). Neutralizing antibody (nAb) titers against wild-type SARS-CoV-2 at 1 month after the booster were 1.7-fold (95% confidence interval (CI): 1.5, 1.9) higher than those at 28 days after the second injection of the primary series, which met the pre-specified non-inferiority criterion (primary immunogenicity objective) and might indicate a memory B cell response. The nAb titers against the Delta variant (B.1.617.2) (exploratory objective) at 1 month after the booster were 2.1-fold (95% CI: 1.8, 2.4) higher than those at 28 days after the second injection of the primary series. The seroresponse rate (95% CI (four-fold rise from baseline)) was 100% (98.7, 100.0) at 28 days after the booster compared to 98.3% (96.0, 99.4) after the primary series. The higher antibody titers at 28 days after the booster dose compared to 28 days after the second dose in the phase 3 COVE study were also observed in two assays for anti-spike IgG antibody measured by ELISA and by Meso Scale Discovery (MSD) Multiplex. The frequency of solicited local and systemic adverse reactions after the booster dose was similar to that after the second dose in the primary two-dose series of mRNA-1273 (50 µg or 100 µg); no new signals were observed in the unsolicited adverse events; and no serious adverse events were reported in the 1-month follow-up period. These results show that a booster injection of mRNA-1273 more than 6 months after completing the primary two-dose series is safe and elicited nAb titers that were statistically significantly higher than the peak titers detected after the primary vaccination series, suggesting that a booster dose of mRNA-1273 might result in increased vaccine effectiveness against infection and disease caused by SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , 2019-nCoV Vaccine mRNA-1273 , Adult , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Immunity , Immunogenicity, Vaccine
20.
Nat Med ; 28(4): 823-830, 2022 04.
Article in English | MEDLINE | ID: mdl-35145311

ABSTRACT

The mRNA-1273 vaccine for coronavirus disease 2019 (COVID-19) demonstrated 93.2% efficacy in reduction of symptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in the blinded portion of the Phase 3 Coronavirus Efficacy (COVE) trial. While mRNA-1273 demonstrated high efficacy in prevention of COVID-19, including severe disease, its effect on the viral dynamics of SARS-CoV-2 infections is not understood. Here, in exploratory analyses, we assessed the impact of mRNA-1273 vaccination in the ongoing COVE trial (number NCT04470427) on SARS-CoV-2 copy number and shedding, burden of disease and infection, and viral variants. Viral variants were sequenced in all COVID-19 and adjudicated COVID-19 cases (n = 832), from July 2020 in the blinded part A of the study to May 2021 of the open-label part B of the study, in which participants in the placebo arm started to receive the mRNA-1273 vaccine after US Food and Drug Administration emergency use authorization of mRNA-1273 in December 2020. mRNA-1273 vaccination significantly reduced SARS-CoV-2 viral copy number (95% confidence interval) by 100-fold on the day of diagnosis compared with placebo (4.1 (3.4-4.8) versus 6.2 (6.0-6.4) log10 copies per ml). Median times to undetectable viral copies were 4 days for mRNA-1273 and 7 days for placebo. Vaccination also substantially reduced the burden of disease and infection scores. Vaccine efficacies (95% confidence interval) against SARS-CoV-2 variants circulating in the United States during the trial assessed in this post hoc analysis were 82.4% (40.4-94.8%) for variants Epsilon and Gamma and 81.2% (36.1-94.5%) for Epsilon. The detection of other, non-SARS-CoV-2, respiratory viruses during the trial was similar between groups. While additional study is needed, these data show that in SARS-CoV-2-infected individuals, vaccination reduced both the viral copy number and duration of detectable viral RNA, which may be markers for the risk of virus transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , 2019-nCoV Vaccine mRNA-1273 , COVID-19/epidemiology , COVID-19/prevention & control , Humans , SARS-CoV-2/genetics , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...