Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Publication year range
1.
J Diabetes Sci Technol ; 17(4): 1008-1015, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35549733

ABSTRACT

BACKGROUND: The first two studies of an artificial pancreas (AP) system carried out in Latin America took place in 2016 (phase 1) and 2017 (phase 2). They evaluated a hybrid algorithm from the University of Virginia (UVA) and the automatic regulation of glucose (ARG) algorithm in an inpatient setting using an AP platform developed by the UVA. The ARG algorithm does not require carbohydrate (CHO) counting and does not deliver meal priming insulin boluses. Here, the first outpatient trial of the ARG algorithm using an own AP platform and doubling the duration of previous phases is presented. METHOD: Phase 3 involved the evaluation of the ARG algorithm in five adult participants (n = 5) during 72 hours of closed-loop (CL) and 72 hours of open-loop (OL) control in an outpatient setting. This trial was performed with an own AP and remote monitoring platform developed from open-source resources, called InsuMate. The meals tested ranged its CHO content from 38 to 120 g and included challenging meals like pasta. Also, the participants performed mild exercise (3-5 km walks) daily. The clinical trial is registered in ClinicalTrials.gov with identifier: NCT04793165. RESULTS: The ARG algorithm showed an improvement in the time in hyperglycemia (52.2% [16.3%] OL vs 48.0% [15.4%] CL), time in range (46.9% [15.6%] OL vs 50.9% [14.4%] CL), and mean glucose (188.9 [25.5] mg/dl OL vs 186.2 [24.7] mg/dl CL) compared with the OL therapy. No severe hyperglycemia or hypoglycemia episodes occurred during the trial. The InsuMate platform achieved an average of more than 95% of the time in CL. CONCLUSION: The results obtained demonstrated the feasibility of outpatient full CL regulation of glucose levels involving the ARG algorithm and the InsuMate platform.


Subject(s)
Diabetes Mellitus, Type 1 , Hyperglycemia , Pancreas, Artificial , Adult , Humans , Algorithms , Blood Glucose , Blood Glucose Self-Monitoring , Diabetes Mellitus, Type 1/drug therapy , Glucose , Hyperglycemia/drug therapy , Hypoglycemic Agents , Insulin , Insulin Infusion Systems , Outpatients , South America
3.
J Diabetes Sci Technol ; 12(5): 914-925, 2018 09.
Article in English | MEDLINE | ID: mdl-29998754

ABSTRACT

BACKGROUND: Emerging therapies such as closed-loop (CL) glucose control, also known as artificial pancreas (AP) systems, have shown significant improvement in type 1 diabetes mellitus (T1DM) management. However, demanding patient intervention is still required, particularly at meal times. To reduce treatment burden, the automatic regulation of glucose (ARG) algorithm mitigates postprandial glucose excursions without feedforward insulin boluses. This work assesses feasibility of this new strategy in a clinical trial. METHODS: A 36-hour pilot study was performed on five T1DM subjects to validate the ARG algorithm. Subjects wore a subcutaneous continuous glucose monitor (CGM) and an insulin pump. Insulin delivery was solely commanded by the ARG algorithm, without premeal insulin boluses. This was the first clinical trial in Latin America to validate an AP controller. RESULTS: For the total 36-hour period, results were as follows: average time of CGM readings in range 70-250 mg/dl: 88.6%, in range 70-180 mg/dl: 74.7%, <70 mg/dl: 5.8%, and <50 mg/dl: 0.8%. Results improved analyzing the final 15-hour period of this trial. In that case, the time spent in range was 70-250 mg/dl: 94.7%, in range 70-180 mg/dl: 82.6%, <70 mg/dl: 4.1%, and <50 mg/dl: 0.2%. During the last night the time spent in range was 70-250 mg/dl: 95%, in range 70-180 mg/dl: 87.7%, <70 mg/dl: 5.0%, and <50 mg/dl: 0.0%. No severe hypoglycemia occurred. No serious adverse events were reported. CONCLUSIONS: The ARG algorithm was successfully validated in a pilot clinical trial, encouraging further tests with a larger number of patients and in outpatient settings.


Subject(s)
Algorithms , Diabetes Mellitus, Type 1/drug therapy , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Pancreas, Artificial , Adult , Blood Glucose Self-Monitoring , Female , Humans , Insulin Infusion Systems , Latin America , Male , Middle Aged , Pilot Projects , Postprandial Period
SELECTION OF CITATIONS
SEARCH DETAIL