Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 197
Filter
2.
Science ; 384(6693): 280, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38669582
3.
Cell ; 185(21): 3849-3853, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36174580

ABSTRACT

The 2022 Lasker-DeBakey Clinical Medical Research Award is presented to Yuk Ming Dennis Lo of the Chinese University of Hong Kong for the discovery of fetal DNA in maternal blood, leading to development of noninvasive prenatal testing for Down syndrome.


Subject(s)
Awards and Prizes , Biomedical Research , Midwifery , DNA , Female , Fetus , Humans , Pregnancy
4.
Proc Natl Acad Sci U S A ; 119(25): e2122379119, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35696582

ABSTRACT

Acute myeloid leukemia (AML) remains a therapeutic challenge, and a paucity of tumor-specific targets has significantly hampered the development of effective immune-based therapies. Recent paradigm-changing studies have shown that natural killer (NK) cells exhibit innate memory upon brief activation with IL-12 and IL-18, leading to cytokine-induced memory-like (CIML) NK cell differentiation. CIML NK cells have enhanced antitumor activity and have shown promising results in early phase clinical trials in patients with relapsed/refractory AML. Here, we show that arming CIML NK cells with a neoepitope-specific chimeric antigen receptor (CAR) significantly enhances their antitumor responses to nucleophosphmin-1 (NPM1)-mutated AML while avoiding off-target toxicity. CIML NK cells differentiated from peripheral blood NK cells were efficiently transduced to express a TCR-like CAR that specifically recognizes a neoepitope derived from the cytosolic oncogenic NPM1-mutated protein presented by HLA-A2. These CAR CIML NK cells displayed enhanced activity against NPM1-mutated AML cell lines and patient-derived leukemic blast cells. CAR CIML NK cells persisted in vivo and significantly improved AML outcomes in xenograft models. Single-cell RNA sequencing and mass cytometry analyses identified up-regulation of cell proliferation, protein folding, immune responses, and major metabolic pathways in CAR-transduced CIML NK cells, resulting in tumor-specific, CAR-dependent activation and function in response to AML target cells. Thus, efficient arming of CIML NK cells with an NPM1-mutation-specific TCR-like CAR substantially improves their innate antitumor responses against an otherwise intracellular mutant protein. These preclinical findings justify evaluating this approach in clinical trials in HLA-A2+ AML patients with NPM1c mutations.


Subject(s)
Immunologic Memory , Immunological Memory Cells , Immunotherapy, Adoptive , Killer Cells, Natural , Leukemia, Myeloid, Acute , Nucleophosmin , Receptors, Chimeric Antigen , HLA-A2 Antigen/immunology , Humans , Immunological Memory Cells/immunology , Immunological Memory Cells/transplantation , Immunotherapy, Adoptive/methods , Killer Cells, Natural/immunology , Killer Cells, Natural/transplantation , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Mutation , Nucleophosmin/genetics , Nucleophosmin/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology
5.
Nat Immunol ; 23(1): 109-121, 2022 01.
Article in English | MEDLINE | ID: mdl-34937919

ABSTRACT

Anemia is a major comorbidity in aging, chronic kidney and inflammatory diseases, and hematologic malignancies. However, the transcriptomic networks governing hematopoietic differentiation in blood cell development remain incompletely defined. Here we report that the atypical kinase RIOK2 (right open reading frame kinase 2) is a master transcription factor (TF) that not only drives erythroid differentiation, but also simultaneously suppresses megakaryopoiesis and myelopoiesis in primary human stem and progenitor cells. Our study reveals the previously uncharacterized winged helix-turn-helix DNA-binding domain and two transactivation domains of RIOK2 that are critical to regulate key hematopoietic TFs GATA1, GATA2, SPI1, RUNX3 and KLF1. This establishes RIOK2 as an integral component of the transcriptional regulatory network governing human hematopoietic differentiation. Importantly, RIOK2 mRNA expression significantly correlates with these TFs and other hematopoietic genes in myelodysplastic syndromes, acute myeloid leukemia and chronic kidney disease. Further investigation of RIOK2-mediated transcriptional pathways should yield therapeutic approaches to correct defective hematopoiesis in hematologic disorders.


Subject(s)
Blood Cells/metabolism , Protein Serine-Threonine Kinases/metabolism , Amino Acid Sequence , Cell Differentiation/physiology , Cell Line, Tumor , Cells, Cultured , Erythropoiesis/physiology , Gene Expression Regulation/physiology , HEK293 Cells , Hematopoietic Stem Cells/metabolism , Humans , K562 Cells , Leukemia, Myeloid, Acute/metabolism , Myelodysplastic Syndromes/metabolism , Myelopoiesis/physiology , Transcription Factors/metabolism , Transcription, Genetic/physiology
6.
Cell ; 184(21): 5275-5278, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34562359

ABSTRACT

The 2021 Lasker∼Koshland Special Achievement Award will be presented to David Baltimore for an extraordinary career that has personified the combination of outstanding biomedical research and exemplary scientific statesmanship.


Subject(s)
Awards and Prizes , Biomedical Research/history , Animals , History, 20th Century , History, 21st Century , Humans , NF-kappa B/metabolism , RNA-Directed DNA Polymerase/metabolism
8.
J Exp Med ; 218(8)2021 08 02.
Article in English | MEDLINE | ID: mdl-34160550

ABSTRACT

We have described a child suffering from Mendelian susceptibility to mycobacterial disease (MSMD) due to autosomal recessive, complete T-bet deficiency, which impairs IFN-γ production by innate and innate-like adaptive, but not mycobacterial-reactive purely adaptive, lymphocytes. Here, we explore the persistent upper airway inflammation (UAI) and blood eosinophilia of this patient. Unlike wild-type (WT) T-bet, the mutant form of T-bet from this patient did not inhibit the production of Th2 cytokines, including IL-4, IL-5, IL-9, and IL-13, when overexpressed in T helper 2 (Th2) cells. Moreover, Herpesvirus saimiri-immortalized T cells from the patient produced abnormally large amounts of Th2 cytokines, and the patient had markedly high plasma IL-5 and IL-13 concentrations. Finally, the patient's CD4+ αß T cells produced most of the Th2 cytokines in response to chronic stimulation, regardless of their antigen specificities, a phenotype reversed by the expression of WT T-bet. T-bet deficiency thus underlies the excessive production of Th2 cytokines, particularly IL-5 and IL-13, by CD4+ αß T cells, causing blood eosinophilia and UAI. The MSMD of this patient results from defective IFN-γ production by innate and innate-like adaptive lymphocytes, whereas the UAI and eosinophilia result from excessive Th2 cytokine production by adaptive CD4+ αß T lymphocytes.


Subject(s)
Cytokines/metabolism , Pneumonia/immunology , T-Box Domain Proteins/deficiency , Th2 Cells/immunology , Animals , Cytokines/blood , Epigenesis, Genetic , Epitopes/immunology , Female , Humans , Immunologic Memory , Male , Mice, Inbred C57BL , Mutation/genetics , Pedigree , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Respiratory Hypersensitivity/blood , Respiratory Hypersensitivity/immunology , Sequence Analysis, RNA , Single-Cell Analysis , T-Box Domain Proteins/genetics
10.
Nat Immunol ; 22(4): 520-529, 2021 04.
Article in English | MEDLINE | ID: mdl-33753942

ABSTRACT

Patients with myelodysplastic syndromes (MDSs) display severe anemia but the mechanisms underlying this phenotype are incompletely understood. Right open-reading-frame kinase 2 (RIOK2) encodes a protein kinase located at 5q15, a region frequently lost in patients with MDS del(5q). Here we show that hematopoietic cell-specific haploinsufficient deletion of Riok2 (Riok2f/+Vav1cre) led to reduced erythroid precursor frequency leading to anemia. Proteomic analysis of Riok2f/+Vav1cre erythroid precursors suggested immune system activation, and transcriptomic analysis revealed an increase in p53-dependent interleukin (IL)-22 in Riok2f/+Vav1cre CD4+ T cells (TH22). Further, we discovered that the IL-22 receptor, IL-22RA1, was unexpectedly present on erythroid precursors. Blockade of IL-22 signaling alleviated anemia not only in Riok2f/+Vav1cre mice but also in wild-type mice. Serum concentrations of IL-22 were increased in the subset of patients with del(5q) MDS as well as patients with anemia secondary to chronic kidney disease. This work reveals a possible therapeutic opportunity for reversing many stress-induced anemias by targeting IL-22 signaling.


Subject(s)
Anemia/metabolism , Antibodies, Neutralizing/pharmacology , Erythroid Cells/metabolism , Erythropoiesis/drug effects , Interleukins/antagonists & inhibitors , Myelodysplastic Syndromes/drug therapy , Receptors, Interleukin/metabolism , Anemia/blood , Anemia/immunology , Anemia/prevention & control , Animals , Cells, Cultured , Cellular Microenvironment , Disease Models, Animal , Erythroid Cells/immunology , Humans , Interleukins/immunology , Interleukins/metabolism , Mice, Inbred C57BL , Mice, Knockout , Myelodysplastic Syndromes/blood , Myelodysplastic Syndromes/immunology , Myelodysplastic Syndromes/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-vav/genetics , Proto-Oncogene Proteins c-vav/metabolism , Receptors, Interleukin/genetics , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/immunology , Renal Insufficiency, Chronic/metabolism , Signal Transduction , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Interleukin-22
12.
Cell ; 183(7): 1826-1847.e31, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33296702

ABSTRACT

Inborn errors of human interferon gamma (IFN-γ) immunity underlie mycobacterial disease. We report a patient with mycobacterial disease due to inherited deficiency of the transcription factor T-bet. The patient has extremely low counts of circulating Mycobacterium-reactive natural killer (NK), invariant NKT (iNKT), mucosal-associated invariant T (MAIT), and Vδ2+ γδ T lymphocytes, and of Mycobacterium-non reactive classic TH1 lymphocytes, with the residual populations of these cells also producing abnormally small amounts of IFN-γ. Other lymphocyte subsets develop normally but produce low levels of IFN-γ, with the exception of CD8+ αß T and non-classic CD4+ αß TH1∗ lymphocytes, which produce IFN-γ normally in response to mycobacterial antigens. Human T-bet deficiency thus underlies mycobacterial disease by preventing the development of innate (NK) and innate-like adaptive lymphocytes (iNKT, MAIT, and Vδ2+ γδ T cells) and IFN-γ production by them, with mycobacterium-specific, IFN-γ-producing, purely adaptive CD8+ αß T, and CD4+ αß TH1∗ cells unable to compensate for this deficit.


Subject(s)
Adaptive Immunity , Immunity, Innate , Interferon-gamma/immunology , Mycobacterium/immunology , T-Box Domain Proteins/metabolism , Amino Acid Sequence , Base Sequence , Cell Lineage , Child, Preschool , Chromatin/metabolism , CpG Islands/genetics , DNA Methylation/genetics , Dendritic Cells/metabolism , Epigenesis, Genetic , Female , Homozygote , Humans , INDEL Mutation/genetics , Infant , Interferon-gamma/metabolism , Killer Cells, Natural/cytology , Killer Cells, Natural/metabolism , Loss of Function Mutation/genetics , Male , Mycobacterium Infections/genetics , Mycobacterium Infections/immunology , Mycobacterium Infections/microbiology , Pedigree , T-Box Domain Proteins/chemistry , T-Box Domain Proteins/deficiency , T-Box Domain Proteins/genetics , T-Lymphocytes, Helper-Inducer/immunology , Transcriptome/genetics
14.
Science ; 365(6450)2019 07 19.
Article in English | MEDLINE | ID: mdl-31320508

ABSTRACT

Inositol-requiring enzyme 1[α] (IRE1[α])-X-box binding protein spliced (XBP1) signaling maintains endoplasmic reticulum (ER) homeostasis while controlling immunometabolic processes. Yet, the physiological consequences of IRE1α-XBP1 activation in leukocytes remain unexplored. We found that induction of prostaglandin-endoperoxide synthase 2 (Ptgs2/Cox-2) and prostaglandin E synthase (Ptges/mPGES-1) was compromised in IRE1α-deficient myeloid cells undergoing ER stress or stimulated through pattern recognition receptors. Inducible biosynthesis of prostaglandins, including the pro-algesic mediator prostaglandin E2 (PGE2), was decreased in myeloid cells that lack IRE1α or XBP1 but not other ER stress sensors. Functional XBP1 transactivated the human PTGS2 and PTGES genes to enable optimal PGE2 production. Mice that lack IRE1α-XBP1 in leukocytes, or that were treated with IRE1α inhibitors, demonstrated reduced pain behaviors in PGE2-dependent models of pain. Thus, IRE1α-XBP1 is a mediator of prostaglandin biosynthesis and a potential target to control pain.


Subject(s)
Dinoprostone/biosynthesis , Endoribonucleases/metabolism , Leukocytes/metabolism , Pain, Postoperative/metabolism , Protein Serine-Threonine Kinases/metabolism , Visceral Pain/metabolism , X-Box Binding Protein 1/metabolism , Animals , Cells, Cultured , Cyclooxygenase 2/genetics , Endoribonucleases/genetics , Humans , Mice , Mice, Inbred C57BL , Myeloid Cells/metabolism , Pain, Postoperative/genetics , Promoter Regions, Genetic , Prostaglandin-E Synthases/genetics , Protein Serine-Threonine Kinases/genetics , Signal Transduction , Unfolded Protein Response , Visceral Pain/genetics , X-Box Binding Protein 1/genetics
15.
Nat Immunol ; 20(7): 865-878, 2019 07.
Article in English | MEDLINE | ID: mdl-31086333

ABSTRACT

Natural killer (NK) cells are critical mediators of host immunity to pathogens. Here, we demonstrate that the endoplasmic reticulum stress sensor inositol-requiring enzyme 1 (IRE1α) and its substrate transcription factor X-box-binding protein 1 (XBP1) drive NK cell responses against viral infection and tumors in vivo. IRE1α-XBP1 were essential for expansion of activated mouse and human NK cells and are situated downstream of the mammalian target of rapamycin signaling pathway. Transcriptome and chromatin immunoprecipitation analysis revealed c-Myc as a new and direct downstream target of XBP1 for regulation of NK cell proliferation. Genetic ablation or pharmaceutical blockade of IRE1α downregulated c-Myc, and NK cells with c-Myc haploinsufficency phenocopied IRE1α-XBP1 deficiency. c-Myc overexpression largely rescued the proliferation defect in IRE1α-/- NK cells. Like c-Myc, IRE1α-XBP1 also promotes oxidative phosphorylation in NK cells. Overall, our study identifies a IRE1α-XBP1-cMyc axis in NK cell immunity, providing insight into host protection against infection and cancer.


Subject(s)
Endoplasmic Reticulum Stress/genetics , Endoribonucleases/genetics , Gene Expression Regulation , Genes, myc , Immunity/genetics , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Protein Serine-Threonine Kinases/genetics , Animals , Biomarkers , Cell Survival/genetics , Cell Survival/immunology , Cytotoxicity, Immunologic , Host-Pathogen Interactions/immunology , Humans , Lymphocyte Activation/immunology , Melanoma, Experimental , Mice , Mice, Knockout , Mitochondria/metabolism , Oxidative Phosphorylation , Signal Transduction , X-Box Binding Protein 1/metabolism
16.
Nature ; 562(7727): 423-428, 2018 10.
Article in English | MEDLINE | ID: mdl-30305738

ABSTRACT

Tumours evade immune control by creating hostile microenvironments that perturb T cell metabolism and effector function1-4. However, it remains unclear how intra-tumoral T cells integrate and interpret metabolic stress signals. Here we report that ovarian cancer-an aggressive malignancy that is refractory to standard treatments and current immunotherapies5-8-induces endoplasmic reticulum stress and activates the IRE1α-XBP1 arm of the unfolded protein response9,10 in T cells to control their mitochondrial respiration and anti-tumour function. In T cells isolated from specimens collected from patients with ovarian cancer, upregulation of XBP1 was associated with decreased infiltration of T cells into tumours and with reduced IFNG mRNA expression. Malignant ascites fluid obtained from patients with ovarian cancer inhibited glucose uptake and caused N-linked protein glycosylation defects in T cells, which triggered IRE1α-XBP1 activation that suppressed mitochondrial activity and IFNγ production. Mechanistically, induction of XBP1 regulated the abundance of glutamine carriers and thus limited the influx of glutamine that is necessary to sustain mitochondrial respiration in T cells under glucose-deprived conditions. Restoring N-linked protein glycosylation, abrogating IRE1α-XBP1 activation or enforcing expression of glutamine transporters enhanced mitochondrial respiration in human T cells exposed to ovarian cancer ascites. XBP1-deficient T cells in the metastatic ovarian cancer milieu exhibited global transcriptional reprogramming and improved effector capacity. Accordingly, mice that bear ovarian cancer and lack XBP1 selectively in T cells demonstrate superior anti-tumour immunity, delayed malignant progression and increased overall survival. Controlling endoplasmic reticulum stress or targeting IRE1α-XBP1 signalling may help to restore the metabolic fitness and anti-tumour capacity of T cells in cancer hosts.


Subject(s)
Endoribonucleases/metabolism , Mitochondria/metabolism , Ovarian Neoplasms/immunology , Protein Serine-Threonine Kinases/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology , X-Box Binding Protein 1/metabolism , Amino Acid Transport Systems, Basic , Animals , Ascites/metabolism , Cell Respiration , Disease Progression , Endoplasmic Reticulum Stress , Female , Gene Expression Regulation, Neoplastic , Glucose/metabolism , Glutamine/metabolism , Glycosylation , Humans , Interferon-gamma/biosynthesis , Interferon-gamma/genetics , Mice , Neoplasm Metastasis , Neoplasm Transplantation , Ovarian Neoplasms/pathology , Signal Transduction , Survival Rate , T-Lymphocytes/metabolism , Tumor Escape/immunology , Unfolded Protein Response , X-Box Binding Protein 1/biosynthesis , X-Box Binding Protein 1/deficiency
17.
Nat Med ; 24(6): 823-833, 2018 06.
Article in English | MEDLINE | ID: mdl-29785024

ABSTRACT

Recent studies have identified a specialized subset of CD31hiendomucinhi (CD31hiEMCNhi) vascular endothelium that positively regulates bone formation. However, it remains unclear how CD31hiEMCNhi endothelium levels are coupled to anabolic bone formation. Mice with an osteoblast-specific deletion of Shn3, which have markedly elevated bone formation, demonstrated an increase in CD31hiEMCNhi endothelium. Transcriptomic analysis identified SLIT3 as an osteoblast-derived, SHN3-regulated proangiogenic factor. Genetic deletion of Slit3 reduced skeletal CD31hiEMCNhi endothelium, resulted in low bone mass because of impaired bone formation and partially reversed the high bone mass phenotype of Shn3-/- mice. This coupling between osteoblasts and CD31hiEMCNhi endothelium is essential for bone healing, as shown by defective fracture repair in SLIT3-mutant mice and enhanced fracture repair in SHN3-mutant mice. Finally, administration of recombinant SLIT3 both enhanced bone fracture healing and counteracted bone loss in a mouse model of postmenopausal osteoporosis. Thus, drugs that target the SLIT3 pathway may represent a new approach for vascular-targeted osteoanabolic therapy to treat bone loss.


Subject(s)
Bone Resorption/pathology , Bone and Bones/pathology , Endothelium/pathology , Animals , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Bone Resorption/diagnostic imaging , Bone and Bones/diagnostic imaging , Bone and Bones/drug effects , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/metabolism , Disease Models, Animal , Endothelium/drug effects , Fracture Healing/drug effects , Humans , Membrane Proteins/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Neovascularization, Physiologic/drug effects , Nerve Tissue Proteins/metabolism , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteoblasts/pathology , Osteogenesis/drug effects , Osteoporosis, Postmenopausal/drug therapy , Osteoporosis, Postmenopausal/pathology , Ovariectomy , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Receptors, Immunologic/metabolism , Recombinant Proteins/administration & dosage , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Sialoglycoproteins/metabolism , Roundabout Proteins
19.
Immunity ; 46(6): 968-970, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28636963

ABSTRACT

In this issue of Immunity, Iwata et al. (2017) report that the transcription factor T-bet acts as a selective repressor of the type I interferon (IFN) transcriptional program in response to IFN-γ signaling.


Subject(s)
Interferon-gamma/immunology , T-Box Domain Proteins , Humans , Transcription Factors
20.
Nat Immunol ; 18(7): 780-790, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28553951

ABSTRACT

The acquisition of a protective vertebrate immune system hinges on the efficient generation of a diverse but self-tolerant repertoire of T cells by the thymus through mechanisms that remain incompletely resolved. Here we identified the endosomal-sorting-complex-required-for-transport (ESCRT) protein CHMP5, known to be required for the formation of multivesicular bodies, as a key sensor of thresholds for signaling via the T cell antigen receptor (TCR) that was essential for T cell development. CHMP5 enabled positive selection by promoting post-selection thymocyte survival in part through stabilization of the pro-survival protein Bcl-2. Accordingly, loss of CHMP5 in thymocyte precursor cells abolished T cell development, a phenotype that was 'rescued' by genetic deletion of the pro-apoptotic protein Bim or transgenic expression of Bcl-2. Mechanistically, positive selection resulted in the stabilization of CHMP5 by inducing its interaction with the deubiquitinase USP8. Our results thus identify CHMP5 as an essential component of the post-translational machinery required for T cell development.


Subject(s)
Cell Differentiation/immunology , Endosomal Sorting Complexes Required for Transport/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Thymocytes/immunology , Animals , Bcl-2-Like Protein 11/immunology , Endopeptidases/immunology , Immunoblotting , Immunoprecipitation , Mice , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Protein Processing, Post-Translational , Proto-Oncogene Proteins c-bcl-2/immunology , Real-Time Polymerase Chain Reaction , Signal Transduction/immunology , T-Lymphocytes/cytology , Thymocytes/cytology , Ubiquitin Thiolesterase/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...