Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Antimicrob Agents Chemother ; : e0161023, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687017

ABSTRACT

Efficient treatment of anthrax-related meningitis in patients poses a significant therapeutic challenge. Previously, we demonstrated in our anthrax meningitis rabbit model that ciprofloxacin treatment is ineffective with most of the treated animals succumbing to the infection. Herein we tested the efficacy of doxycycline in our rabbit model and found it highly effective. Since all of our findings are based on a rabbit model, we test the efficacy of ciprofloxacin or doxycycline in a specific central nervous system (CNS) model developed in non-human primates (NHPs). Similar to rabbits, ciprofloxacin treatment was ineffective, while doxycycline protected the infected rhesus macaques (n = 2) from the lethal CNS Bacillus anthracis infection. To test whether the low efficacy of Ciprofloxacin is an example of low efficacy of all fluoroquinolones or only this substance, we treated rabbits that were inoculated intracisterna magna (ICM) with levofloxacin or moxifloxacin. We found that in contrast to ciprofloxacin, levofloxacin and moxifloxacin were highly efficacious in treating lethal anthrax-related meningitis in rabbits and NHP (levofloxacin). We demonstrated (in naïve rabbits) that this difference probably results from variances in blood-brain-barrier penetration of the different fluoroquinolones. The combined treatment of doxycycline and any one of the tested fluoroquinolones was highly effective in the rabbit CNS infection model. The combined treatment of doxycycline and levofloxacin was effective in an inhalation rabbit model, as good as the doxycycline mono-therapy. These findings imply that while ciprofloxacin is highly effective as a post-exposure prophylactic drug, using this drug to treat symptomatic patients should be reconsidered.

2.
PLoS One ; 18(2): e0281879, 2023.
Article in English | MEDLINE | ID: mdl-36795682

ABSTRACT

Bacillus anthracis overcomes host immune responses by producing capsule and secreting toxins. Production of these virulence factors in response to entering the host environment was shown to be regulated by atxA, the major virulence regulator, known to be activated by HCO3- and CO2. While toxin production is regulated directly by atxA, capsule production is independently mediated by two regulators; acpA and acpB. In addition, it was demonstrated that acpA has at least two promotors, one of them shared with atxA. We used a genetic approach to study capsule and toxin production under different conditions. Unlike previous works utilizing NBY, CA or R-HCO3- medium under CO2 enriched conditions, we used a sDMEM-based medium. Thus, toxin and capsule production can be induced in ambient or CO2 enriched atmosphere. Using this system, we could differentiate between induction by 10% NRS, 10% CO2 or 0.75% HCO3-. In response to high CO2, capsule production is induced by acpA based response in an atxA-independent manner, with little to no toxin (protective antigen PA) production. atxA based response is activated in response to serum independently of CO2, inducing toxin and capsule production in an acpA or acpB dependent manner. HCO3- was also found to activate atxA based response, but in non-physiological concentrations. Our findings may help explain the first stages of inhalational infection, in which spores germinating in dendritic cells require protection (by encapsulation) without affecting cell migration to the draining lymph-node by toxin secretion.


Subject(s)
Bacillus anthracis , Bacterial Toxins , Bacterial Proteins/genetics , Bacterial Toxins/genetics , Carbon Dioxide/pharmacology , Gene Expression Regulation, Bacterial , Antigens, Bacterial/genetics
3.
Microbiol Spectr ; 10(5): e0241522, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36190401

ABSTRACT

The life-threatening disease tularemia is caused by Francisella tularensis, an intracellular Gram-negative bacterial pathogen. Due to the high mortality rates of the disease, as well as the low respiratory infectious dose, F. tularensis is categorized as a Tier 1 bioterror agent. The identification and isolation from clinical blood cultures of F. tularensis are complicated by its slow growth. Iron was shown to be one of the limiting nutrients required for F. tularensis metabolism and growth. Bacterial growth was shown to be restricted or enhanced in the absence or addition of iron. In this study, we tested the beneficial effect of enhanced iron concentrations on expediting F. tularensis blood culture diagnostics. Accordingly, bacterial growth rates in blood cultures with or without Fe2+ supplementation were evaluated. Growth quantification by direct CFU counts demonstrated significant improvement of growth rates of up to 6 orders of magnitude in Fe2+-supplemented media compared to the corresponding nonmodified cultures. Fe2+ supplementation significantly shortened incubation periods for successful diagnosis and isolation of F. tularensis by up to 92 h. This was achieved in a variety of blood culture types in spite of a low initial bacterial inoculum representative of low levels of bacteremia. These improvements were demonstrated with culture of either Francisella tularensis subsp. tularensis or subsp. holarctica in all examined commercial blood culture types routinely used in a clinical setup. Finally, essential downstream identification assays, such as matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS), immunofluorescence, or antibiotic susceptibility tests, were not affected in the presence of Fe2+. To conclude, supplementing blood cultures with Fe2+ enables a significant shortening of incubation times for F. tularensis diagnosis, without affecting subsequent identification or isolation assays. IMPORTANCE In this study, we evaluated bacterial growth rates of Francisella tularensis strains in iron (Fe)-enriched blood cultures as a means of improving and accelerating bacterial growth. The shortening of the culturing time should facilitate rapid pathogen detection and isolation, positively impacting clinical diagnosis and enabling prompt onset of efficient therapy.


Subject(s)
Francisella tularensis , Tularemia , Humans , Francisella tularensis/metabolism , Blood Culture , Tularemia/diagnosis , Tularemia/metabolism , Tularemia/microbiology , Iron/metabolism , Anti-Bacterial Agents/pharmacology
4.
Anal Chem ; 94(10): 4380-4389, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35230823

ABSTRACT

A multi-component microarray, applying a novel analysis algorithm, was developed for quantitative evaluation of the SARS-CoV-2 vaccines' immunogenicity. The array enables simultaneous quantitation of IgG, IgM, and IgA, specific to the SARS-CoV-2 spike, receptor binding domain, and nucleocapsid proteins. The developed methodology is based on calculating an apparent immunoglobulin signal from the linear range of the fluorescent read-outs generated by scanning the microarray slides at different exposure times. A dedicated algorithm, employing a rigorous set of embedded conditions, then generates a normalized signal for each of the unique assays. Qualification of the multi-component array performance (evaluating linearity, extended dynamic-range, specificity, precision, and accuracy) was carried out with an in-house COVID-19, qRT-PCR positive serum, as well as pre-pandemic commercial negative sera. Results were compared to the WHO international standard for anti-SARS-CoV-2 immunoglobulins. Specific IgG, IgM, and IgA signals obtained by this array enabled successful discrimination between SARS-CoV-2 q-RT-PCR positive (seroconverted SARS-CoV-2 patients) and negative (naïve) samples. This array is currently used for evaluation of the humoral response to BriLife, the VSV-based Israeli vaccine during phase I/II clinical trials.


Subject(s)
COVID-19 Vaccines , COVID-19 , Antibodies, Viral , COVID-19/diagnosis , COVID-19/prevention & control , Humans , Immunoglobulin G , Immunoglobulin M , SARS-CoV-2/genetics , Sensitivity and Specificity
5.
Int J Infect Dis ; 118: 211-213, 2022 May.
Article in English | MEDLINE | ID: mdl-35257907

ABSTRACT

SARS-CoV-2 Omicron strain emergence raised concerns that its enhanced infectivity is partly due to altered spread/contamination modalities. We therefore sampled high-contact surfaces and air in close proximity to patients who were verified as infected with the Omicron strain, using identical protocols applied to sample patients positive to the original or Alpha strains. Cumulatively, for all 3 strains, viral RNA was detected in 90 of 168 surfaces and 6 of 49 air samples (mean cycle threshold [Ct]=35.2±2.5). No infective virus was identified. No significant differences in prevalence were found between strains.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , RNA, Viral/genetics , Specimen Handling
6.
Vaccines (Basel) ; 10(2)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35214749

ABSTRACT

The emergence of rapidly spreading variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a major challenge to the ability of vaccines and therapeutic antibodies to provide immunity. These variants contain mutations of specific amino acids that might impede vaccine efficacy. BriLife® (rVSV-ΔG-spike) is a newly developed SARS-CoV-2 vaccine candidate currently in phase II clinical trials. It is based on a replication-competent vesicular stomatitis virus (VSV) platform. The rVSV-ΔG-spike contains several spontaneously acquired spike mutations that correspond to SARS-CoV-2 variants' mutations. We show that human sera from BriLife® vaccinees preserve comparable neutralization titers towards alpha, gamma, and delta variants and show less than a three-fold reduction in the neutralization capacity of beta and omicron compared to the original virus. Taken together, we show that human sera from BriLife® vaccinees overall maintain a neutralizing antibody response against all tested variants. We suggest that BriLife®-acquired mutations may prove advantageous against future SARS-CoV-2 VOCs.

7.
Pathogens ; 11(2)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35215198

ABSTRACT

Plague, caused by the human pathogen Yersinia pestis, is a severe and rapidly progressing lethal disease that has caused millions of deaths globally throughout human history and still presents a significant public health concern, mainly in developing countries. Owing to the possibility of its malicious use as a bio-threat agent, Y. pestis is classified as a tier-1 select agent. The prompt administration of an effective antimicrobial therapy, essential for a favorable patient prognosis, requires early pathogen detection, identification and isolation. Although the disease rapidly progresses and the pathogen replicates at high rates within the host, Y. pestis exhibits a slow growth in vitro under routinely employed clinical culturing conditions, complicating the diagnosis and isolation. In the current study, the in vitro bacterial growth in blood cultures was accelerated by the addition of nutritional supplements. We report the ability of calcium (Ca+2)- and iron (Fe+2)-enriched aerobic blood culture media to expedite the growth of various virulent Y. pestis strains. Using a supplemented blood culture, a shortening of the doubling time from ~110 min to ~45 min could be achieved, resulting in increase of 5 order of magnitude in the bacterial loads within 24 h of incubation, consequently allowing the rapid detection and isolation of the slow growing Y. pestis bacteria. In addition, the aerobic and anaerobic blood culture bottles used in clinical set-up were compared for a Y. pestis culture in the presence of Ca+2 and Fe+2. The comparison established the superiority of the supplemented aerobic cultures for an early detection and achieved a significant increase in the yields of the pathogen. In line with the accelerated bacterial growth rates, the specific diagnostic markers F1 and LcrV (V) antigens could be directly detected significantly earlier. Downstream identification employing MALDI-TOF and immunofluorescence assays were performed directly from the inoculated supplemented blood culture, resulting in an increased sensitivity and without any detectable compromise of the accuracy of the antibiotic susceptibility testing (E-test), critical for subsequent successful therapeutic interventions.

8.
Arch Toxicol ; 96(3): 859-875, 2022 03.
Article in English | MEDLINE | ID: mdl-35032184

ABSTRACT

rVSV-ΔG-SARS-CoV-2-S is a clinical stage (Phase 2) replication competent recombinant vaccine against SARS-CoV-2. To evaluate the safety profile of the vaccine, a series of non-clinical safety, immunogenicity and efficacy studies were conducted in four animal species, using multiple doses (up to 108 Plaque Forming Units/animal) and dosing regimens. There were no treatment-related mortalities or any noticeable clinical signs in any of the studies. Compared to unvaccinated controls, hematology and biochemistry parameters were unremarkable and no adverse histopathological findings. There was no detectable viral shedding in urine, nor viral RNA detected in whole blood or serum samples seven days post vaccination. The rVSV-ΔG-SARS-CoV-2-S vaccination gave rise to neutralizing antibodies, cellular immune responses, and increased lymphocytic cellularity in the spleen germinal centers and regional lymph nodes. No evidence for neurovirulence was found in C57BL/6 immune competent mice or in highly sensitive type I interferon knock-out mice. Vaccine virus replication and distribution in K18-human Angiotensin-converting enzyme 2-transgenic mice showed a gradual clearance from the vaccination site with no vaccine virus recovered from the lungs. The nonclinical data suggest that the rVSV-ΔG-SARS-CoV-2-S vaccine is safe and immunogenic. These results supported the initiation of clinical trials, currently in Phase 2.


Subject(s)
COVID-19 Vaccines/toxicity , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/immunology , Cricetinae , Female , Membrane Glycoproteins/genetics , Mesocricetus , Mice , Mice, Inbred C57BL , Rabbits , Swine , Vaccination , Vaccines, Synthetic/toxicity , Viral Envelope Proteins/genetics
9.
Anal Bioanal Chem ; 414(5): 1949-1962, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34981149

ABSTRACT

Recently, numerous diagnostic approaches from different disciplines have been developed for SARS-CoV-2 diagnosis to monitor and control the COVID-19 pandemic. These include MS-based assays, which provide analytical information on viral proteins. However, their sensitivity is limited, estimated to be 5 × 104 PFU/ml in clinical samples. Here, we present a reliable, specific, and rapid method for the identification of SARS-CoV-2 from nasopharyngeal (NP) specimens, which combines virus capture followed by LC-MS/MS(MRM) analysis of unique peptide markers. The capture of SARS-CoV-2 from the challenging matrix, prior to its tryptic digestion, was accomplished by magnetic beads coated with polyclonal IgG-α-SARS-CoV-2 antibodies, enabling sample concentration while significantly reducing background noise interrupting with LC-MS analysis. A sensitive and specific LC-MS/MS(MRM) analysis method was developed for the identification of selected tryptic peptide markers. The combined assay, which resulted in S/N ratio enhancement, achieved an improved sensitivity of more than 10-fold compared with previously described MS methods. The assay was validated in 29 naive NP specimens, 19 samples were spiked with SARS-CoV-2 and 10 were used as negative controls. Finally, the assay was successfully applied to clinical NP samples (n = 26) pre-determined as either positive or negative by RT-qPCR. This work describes for the first time a combined approach for immuno-magnetic viral isolation coupled with MS analysis. This method is highly reliable, specific, and sensitive; thus, it may potentially serve as a complementary assay to RT-qPCR, the gold standard test. This methodology can be applied to other viruses as well.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Chromatography, Liquid/methods , Immunomagnetic Separation/methods , SARS-CoV-2/genetics , Tandem Mass Spectrometry/methods , Amino Acid Sequence , Antibodies, Viral/chemistry , Biomarkers/chemistry , COVID-19/immunology , COVID-19/virology , COVID-19 Testing/instrumentation , COVID-19 Testing/standards , Chromatography, Liquid/instrumentation , Chromatography, Liquid/standards , Humans , Immunomagnetic Separation/instrumentation , Immunomagnetic Separation/standards , Nasopharynx/virology , Peptides/chemistry , Peptides/immunology , SARS-CoV-2/immunology , Sensitivity and Specificity , Tandem Mass Spectrometry/instrumentation , Tandem Mass Spectrometry/standards
10.
Microbiol Spectr ; 9(2): e0087021, 2021 10 31.
Article in English | MEDLINE | ID: mdl-34612689

ABSTRACT

The first case of SARS-CoV-2 was discovered in Israel in late February 2020. Three major outbreaks followed, resulting in over 800,000 cases and over 6,000 deaths by April 2021. Our aim was characterization of a serological snapshot of Israeli patients and healthy adults in the early months of the COVID-19 pandemic. Sera from 55 symptomatic COVID-19 patients and 146 healthy subjects (early-pandemic, reverse transcription-quantitative PCR [qRT-PCR]-negative), collected in Israel between March and April 2020, were screened for SARS-CoV-2-specific IgG, IgM, and IgA antibodies, using a 6-plex antigen microarray presenting the whole inactivated virus and five viral antigens: a stabilized version of the spike ectodomain (S2P), spike subunit 1 (S1), receptor-binding-domain (RBD), N-terminal-domain (NTD), and nucleocapsid (NC). COVID-19 patients, 4 to 40 days post symptom onset, presented specific IgG to all of the viral antigens (6/6) in 54 of the 55 samples (98% sensitivity). Specific IgM and IgA antibodies for all six antigens were detected in only 10% (5/55) and 4% (2/55) of the patients, respectively, suggesting that specific IgG is a superior serological marker for COVID-19. None of the qRT-PCR-negative sera reacted with all six viral antigens (100% specificity), and 48% (70/146) were negative throughout the panel. Our findings confirm a low seroprevalence of anti-SARS-CoV-2 antibodies in the Israeli adult population prior to the COVID-19 outbreak. We further suggest that the presence of low-level cross-reacting antibodies in naive individuals calls for a combined, multiantigen analysis for accurate discrimination between naive and exposed individuals. IMPORTANCE A 6-plex protein array presenting the whole inactivated virus and five nucleocapsid and spike-derived SARS-CoV-2 antigens was used to generate a serological snapshot of SARS-CoV-2 seroprevalence and seroconversion in Israel in the early months of the pandemic. Our findings confirm a very low seroprevalence of anti-SARS-CoV-2 antibodies in the Israeli adult population. We further propose that the presence of low-level nonspecific antibodies in naive individuals calls for a combined, multiantigen analysis for accurate discrimination between naive and exposed individuals enabling accurate determination of seroconversion. The developed assay is currently applied to evaluate immune responses to the Israeli vaccine during human phase I/II trials.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/epidemiology , Microarray Analysis/methods , SARS-CoV-2/immunology , Adult , Aged , Antigens, Viral/immunology , Coronavirus Nucleocapsid Proteins/immunology , Female , Humans , Immunoassay/methods , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Israel/epidemiology , Male , Middle Aged , Phosphoproteins/immunology , Sensitivity and Specificity , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus/immunology , Young Adult
11.
Anal Chem ; 93(39): 13126-13133, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34551252

ABSTRACT

This study presents the development of a new correlative workflow to bridge the gap between electron microscopy imaging and genetic analysis of viruses. The workflow enables the assignment of genetic information to a specific biological entity by harnessing the nanodissection capability of focused ion beam (FIB). This correlative workflow is based on scanning transmission electron microscopy (STEM) and FIB followed by a polymerase chain reaction (PCR). For this purpose, we studied the tomato brown rugose fruit virus (ToBRFV) and the adenovirus that have significant impacts on plant integrity and human health, respectively. STEM imaging was used for the identification and localization of virus particles on a transmission electron microscopy (TEM) grid followed by FIB milling of the desired region of interest. The final-milled product was subjected to genetic analysis by the PCR. The results prove that the FIB-milling process maintains the integrity of the genetic material as confirmed by the PCR. We demonstrate the identification of RNA and DNA viruses extracted from a few micrometers of an FIB-milled TEM grid. This workflow enables the genetic analysis of specifically imaged viral particles directly from heterogeneous clinical samples. In addition to viral diagnostics, the ability to isolate and to genetically identify specific submicrometer structures may prove valuable in additional fields, including subcellular organelle and granule research.


Subject(s)
Virion , Humans , Microscopy, Electron, Scanning Transmission , Virion/genetics
12.
J Infect Dis ; 224(4): 616-619, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34398244

ABSTRACT

Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants may influence the effectiveness of existing laboratory diagnostics. In the current study we determined whether the British (20I/501Y.V1) and South African (20H/501Y.V2) SARS-CoV-2 variants of concern are detected with an in-house S1-based antigen detection assay, analyzing spiked pools of quantitative reverse-transcription polymerase chain reaction-negative nasopharyngeal swab specimens. The assay, combining 4 monoclonal antibodies, allowed sensitive detection of both the wild type and the variants of concern, despite accumulation of several mutations in the variants' S1 region-results suggesting that this combination, targeting distinct epitopes, enables both specificity and the universality.


Subject(s)
COVID-19/diagnosis , COVID-19/virology , SARS-CoV-2/classification , Antibodies, Monoclonal/immunology , Antigens, Viral/immunology , Antigens, Viral/isolation & purification , COVID-19/immunology , Humans , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/isolation & purification , Viral Load
13.
JCI Insight ; 6(12)2021 06 22.
Article in English | MEDLINE | ID: mdl-33974566

ABSTRACT

Mice are normally unaffected by SARS coronavirus 2 (SARS-CoV-2) infection since the virus does not bind effectively to the murine version of the angiotensin-converting enzyme 2 (ACE2) receptor molecule. Here, we report that induced mild pulmonary morbidities rendered SARS-CoV-2-refractive CD-1 mice susceptible to this virus. Specifically, SARS-CoV-2 infection after application of low doses of the acute lung injury stimulants bleomycin or ricin caused severe disease in CD-1 mice, manifested by sustained body weight loss and mortality rates greater than 50%. Further studies revealed markedly higher levels of viral RNA in the lungs, heart, and serum of low-dose ricin-pretreated mice compared with non-pretreated mice. Furthermore, lung extracts prepared 2-3 days after viral infection contained subgenomic mRNA and virus particles capable of replication only when derived from the pretreated mice. The deleterious effects of SARS-CoV-2 infection were effectively alleviated by passive transfer of polyclonal or monoclonal antibodies generated against the SARS-CoV-2 receptor binding domain (RBD). Thus, viral cell entry in the sensitized mice seems to depend on viral RBD binding, albeit by a mechanism other than the canonical ACE2-mediated uptake route. This unique mode of viral entry, observed over a mildly injured tissue background, may contribute to the exacerbation of coronavirus disease 2019 (COVID-19) pathologies in patients with preexisting morbidities.


Subject(s)
Bleomycin/toxicity , COVID-19/pathology , Lung Injury , Ricin/toxicity , Animals , Chlorocebus aethiops , Comorbidity , Disease Models, Animal , Female , Lung Injury/chemically induced , Lung Injury/virology , Mice , Vero Cells , Virus Attachment , Virus Internalization/drug effects
14.
Viruses ; 13(4)2021 03 26.
Article in English | MEDLINE | ID: mdl-33810465

ABSTRACT

Monoclonal antibodies represent an important avenue for COVID-19 therapy and are routinely used for rapid and accessible diagnosis of SARS-CoV-2 infection. The recent emergence of SARS-CoV-2 genetic variants emphasized the need to enlarge the repertoire of antibodies that target diverse epitopes, the combination of which may improve immune-diagnostics, augment the efficiency of the immunotherapy and prevent selection of escape-mutants. Antigen-specific controlled immunization of experimental animals may elicit antibody repertoires that significantly differ from those generated in the context of the immune response mounted in the course of disease. Accordingly, rabbits were immunized by several recombinant antigens representing distinct domains of the viral spike protein and monoclonal antibodies were isolated from single cells obtained by cell sorting. Characterization of a panel of successfully isolated anti-receptor binding domain (RBD) and anti-N-terminal domain (NTD) antibodies demonstrated that they exhibit high specificity and affinity profiles. Anti-RBD antibodies revealing significant neutralizing potency against SARS-CoV-2 in vitro were found to target at least three distinct epitopes. Epitope mapping established that two of these antibodies recognized a novel epitope located on the surface of the RBD. We suggest that the antibodies isolated in this study are useful for designing SARS-CoV-2 diagnosis and therapy approaches.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , COVID-19/virology , Epitope Mapping , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , Female , Humans , Neutralization Tests , Rabbits , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
15.
Microb Pathog ; 155: 104904, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33930422

ABSTRACT

The poly- δ- d-glutamic acid capsule of Bacillus anthracis plays a major role in this bacterium pathogenicity. Capsule synthesis relies on a 5 gene operon; capB, C, A, D and E that are regulated by acpA and acpB, that respond to the major virulence regulator - atxA. We took a genetic approach to examine the involvement of acpA and acpB in capsule production in vitro and on B. anthracis virulence in vivo. To complement the effect of the mutations on capsule accumulation in vitro, we applied our toxin independent systemic infection method to study their effects in vivo. We found that though the roles of acpA and axpB are redundant in vitro, deleting acpA had a significant effect on pathogenicity, mainly on the time to death. As expected, deletion of both acpA and acpB resulted in loss of capsule accumulation in vitro and full attenuation in vivo, indicating that capsule production depends exclusively on acpA/B regulation. To identify additional effects of acpA and acpB on pathogenicity via non-capsule related virulence pathways, we bypassed acpA/B regulation by inserting the pagA promotor upstream to the cap operon, diverting regulation directly to atxA. This resulted in restoration of capsule accumulation in vitro and virulence (in intravenous or subcutaneous inoculation) in vivo. To test for additional pXO2-based genes involved in capsule production, we cloned the pagAprom-capA-E into the chromosome of VollumΔpXO2, which restored capsule accumulation. These results indicate that of the pXO2 genes, only capA-E and acpA are required for capsule production.


Subject(s)
Bacillus anthracis , Animals , Bacillus anthracis/genetics , Bacterial Capsules/genetics , Bacterial Capsules/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Rabbits , Trans-Activators/genetics , Virulence
16.
Anal Bioanal Chem ; 413(13): 3501-3510, 2021 May.
Article in English | MEDLINE | ID: mdl-33768365

ABSTRACT

Public health experts emphasize the need for quick, point-of-care SARS-CoV-2 detection as an effective strategy for controlling virus spread. To this end, many "antigen" detection devices were developed and commercialized. These devices are mostly based on detecting SARS-CoV-2's nucleocapsid protein. Recently, alerts issued by both the FDA and the CDC raised concerns regarding the devices' tendency to exhibit false positive results. In this work, we developed a novel alternative spike-based antigen assay, comprising four high-affinity, specific monoclonal antibodies, directed against different epitopes on the spike's S1 subunit. The assay's performance was evaluated for COVID-19 detection from nasopharyngeal swabs, compared to an in-house nucleocapsid-based assay, composed of novel antibodies directed against the nucleocapsid. Detection of COVID-19 was carried out in a cohort of 284 qRT-PCR positive and negative nasopharyngeal swab samples. The time resolved fluorescence (TRF) ELISA spike assay displayed very high specificity (99%) accompanied with a somewhat lower sensitivity (66% for Ct < 25), compared to the nucleocapsid ELISA assay which was more sensitive (85% for Ct < 25) while less specific (87% specificity). Despite being outperformed by qRT-PCR, we suggest that there is room for such tests in the clinical setting, as cheap and rapid pre-screening tools. Our results further suggest that when applying antigen detection, one must consider its intended application (sensitivity vs specificity), taking into consideration that the nucleocapsid might not be the optimal target. In this regard, we propose that a combination of both antigens might contribute to the validity of the results. Schematic representation of sample collection and analysis. The figure was created using BioRender.com.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/analysis , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/analysis , Enzyme-Linked Immunosorbent Assay/methods , Humans , Phosphoproteins/analysis , Sensitivity and Specificity , Specimen Handling
17.
Nat Commun ; 11(1): 6402, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33328475

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 imposes an urgent need for rapid development of an efficient and cost-effective vaccine, suitable for mass immunization. Here, we show the development of a replication competent recombinant VSV-∆G-spike vaccine, in which the glycoprotein of VSV is replaced by the spike protein of SARS-CoV-2. In-vitro characterization of this vaccine indicates the expression and presentation of the spike protein on the viral membrane with antigenic similarity to SARS-CoV-2. A golden Syrian hamster in-vivo model for COVID-19 is implemented. We show that a single-dose vaccination results in a rapid and potent induction of SARS-CoV-2 neutralizing antibodies. Importantly, vaccination protects hamsters against SARS-CoV-2 challenge, as demonstrated by the abrogation of body weight loss, and  alleviation of the extensive tissue damage and viral loads in lungs and nasal turbinates. Taken together, we suggest the recombinant VSV-∆G-spike as a safe, efficacious and protective vaccine against SARS-CoV-2.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/immunology , Vesicular stomatitis Indiana virus/immunology , Animals , Antibodies, Viral/immunology , Antigens, Viral/immunology , Body Weight , COVID-19/virology , Cell Line , Cricetinae , Disease Models, Animal , Dose-Response Relationship, Immunologic , Genome, Viral , Lung/pathology , Lung/virology , Mice, Inbred C57BL , Mutation/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/ultrastructure , Vaccination , Viral Load
18.
Clin Microbiol Infect ; 26(12): 1658-1662, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32919072

ABSTRACT

OBJECTIVES: Environmental surfaces have been suggested as likely contributors in the transmission of COVID-19. This study assessed the infectivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contaminating surfaces and objects in two hospital isolation units and a quarantine hotel. METHODS: SARS-CoV-2 virus stability and infectivity on non-porous surfaces was tested under controlled laboratory conditions. Surface and air sampling were conducted at two COVID-19 isolation units and in a quarantine hotel. Viral RNA was detected by RT-PCR and infectivity was assessed by VERO E6 CPE test. RESULTS: In laboratory-controlled conditions, SARS-CoV-2 gradually lost its infectivity completely by day 4 at ambient temperature, and the decay rate of viral viability on surfaces directly correlated with increase in temperature. Viral RNA was detected in 29/55 surface samples (52.7%) and 16/42 surface samples (38%) from the surroundings of symptomatic COVID-19 patients in isolation units of two hospitals and in a quarantine hotel for asymptomatic and very mild COVID-19 patients. None of the surface and air samples from the three sites (0/97) were found to contain infectious titres of SARS-Cov-2 on tissue culture assay. CONCLUSIONS: Despite prolonged viability of SARS-CoV-2 under laboratory-controlled conditions, uncultivable viral contamination of inanimate surfaces might suggest low feasibility for indirect fomite transmission.


Subject(s)
COVID-19/transmission , Fomites/virology , Hospitals, Isolation/statistics & numerical data , Housing/statistics & numerical data , Microbial Viability , SARS-CoV-2/isolation & purification , COVID-19/virology , Humans , RNA, Viral/isolation & purification , Surface Properties , Temperature
19.
Pathogens ; 9(3)2020 Feb 27.
Article in English | MEDLINE | ID: mdl-32120986

ABSTRACT

: Prompt and accurate detection of Bacillus anthracis spores is crucial in the event of intentional spore dissemination in order to reduce the number of expected casualties. Specific identification of these spores from environmental samples is both challenging and time-consuming. This is due to the high homology with other Bacillus species as well as the complex composition of environmental samples, which further impedes assay sensitivity. Previously, we showed that a short incubation of B.anthracis spores in a defined growth medium results in rapid germination, bacterial growth, and secretion of toxins, including protective antigen. In this work, we tested whether coupling the incubation process to a newly developed immune-assay will enable the detection of secreted toxins as markers for the presence of spores in environmental samples. The new immune assay is a flow cytometry-based multiplex that simultaneously detects a protective antigen, lethal factor, and edema factor. Our combined assay detects 1 × 103-1 × 104/mL spores after a 2 h incubation followed by the ~80 min immune-multiplex detection. Extending the incubation step to 5 h increased assay sensitivity to 1 × 102/mL spore. The protocol was validated in various environmental samples using attenuated or fully virulent B. anthracis spores. There was no substantial influence of contaminants derived from real environmental samples on the performance of the assay compared to clean samples, which allow the unequivocal detection of 3 × 103/mL and 3 × 102/mL spores following 2 and 5 hour's incubation, respectively. Overall, we propose this method as a rapid, sensitive, and specific procedure for the identification of B. anthracis spores in environmental samples.

20.
PLoS One ; 15(2): e0228917, 2020.
Article in English | MEDLINE | ID: mdl-32053632

ABSTRACT

As Bacillus anthracis spores pose a proven bio-terror risk, the treatment focus has shifted from exposed populations to anthrax patients and the need for effective antibiotic treatment protocols increases. The CDC recommends carbapenems and Linezolid (oxazolidinone), for the treatment of anthrax, particularly for the late, meningeal stages of the disease. Previously we demonstrated that treatment with Meropenem or Linezolid, either as a single treatment or in combination with Ciprofloxacin, fails to protect rabbits from anthrax-meningitis. In addition, we showed that the failure of Meropenem was due to slow BBB penetration rather than low antibacterial activity. Herein, we tested the effect of increasing the dose of the antibiotic on treatment efficacy. We found that for full protection (88% cure rate) the dose should be increased four-fold from 40 mg/kg to 150 mg/kg. In addition, B. anthracis is a genetically stable bacterium and naturally occurring multidrug resistant B. anthracis strains have not been reported. In this manuscript, we report the efficacy of classical ß-lactams as a single treatment or in combination with ß-lactamase inhibitors in treating anthrax meningitis. We demonstrate that Ampicillin based treatment of anthrax meningitis is largely efficient (66%). The high efficacy (88-100%) of Augmentin (Amoxicillin and Clavulonic acid) and Unasyn (Ampicillin and Sulbactam) makes them a favorable choice due to reports of ß-lactam resistant B. anthracis strains. Tazocin (Piperacillin and Tazobactam) proved inefficient compared to the highly efficient Augmentin and Unasyn.


Subject(s)
Anthrax/drug therapy , Bacillus anthracis/drug effects , beta-Lactams/pharmacology , Amoxicillin-Potassium Clavulanate Combination/therapeutic use , Ampicillin/therapeutic use , Animals , Anti-Bacterial Agents/pharmacology , Bacillus anthracis/metabolism , Bacillus anthracis/pathogenicity , Bacteria/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Meropenem/pharmacology , Microbial Sensitivity Tests , Piperacillin, Tazobactam Drug Combination/therapeutic use , Rabbits , Sulbactam/therapeutic use , beta-Lactamase Inhibitors/therapeutic use , beta-Lactams/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL