Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Emerg Microbes Infect ; 12(2): 2270071, 2023 Dec.
Article En | MEDLINE | ID: mdl-37869789

The emergence of SARS-CoV-2 recombinants is of particular concern as they can result in a sudden increase in immune evasion due to antigenic shift. Recent recombinants XBB and XBB.1.5 have higher transmissibility than previous recombinants such as "Deltacron." We hypothesized that immunity to a SARS-CoV-2 recombinant depends on prior exposure to its parental strains. To test this hypothesis, we examined whether Delta or Omicron (BA.1 or BA.2) immunity conferred through infection, vaccination, or breakthrough infection could neutralize Deltacron and XBB/XBB.1.5 recombinants. We found that Delta, BA.1, or BA.2 breakthrough infections provided better immune protection against Deltacron and its parental strains than did the vaccine booster. None of the sera were effective at neutralizing the XBB lineage or its parent BA.2.75.2, except for the sera from the BA.2 breakthrough group. These results support our hypothesis. In turn, our findings underscore the importance of multivalent vaccines that correspond to the antigenic profile of circulating variants of concern and of variant-specific diagnostics that may guide public health and individual decisions in response to emerging SARS-CoV-2 recombinants.


COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/prevention & control , Vaccination , Antigenic Drift and Shift , Breakthrough Infections , Antibodies, Neutralizing , Antibodies, Viral
2.
Cell Rep Med ; 4(6): 101034, 2023 06 20.
Article En | MEDLINE | ID: mdl-37279751

Differential host responses in coronavirus disease 2019 (COVID-19) and multisystem inflammatory syndrome in children (MIS-C) remain poorly characterized. Here, we use next-generation sequencing to longitudinally analyze blood samples from pediatric patients with COVID-19 or MIS-C across three hospitals. Profiling of plasma cell-free nucleic acids uncovers distinct signatures of cell injury and death between COVID-19 and MIS-C, with increased multiorgan involvement in MIS-C encompassing diverse cell types, including endothelial and neuronal cells, and an enrichment of pyroptosis-related genes. Whole-blood RNA profiling reveals upregulation of similar pro-inflammatory pathways in COVID-19 and MIS-C but also MIS-C-specific downregulation of T cell-associated pathways. Profiling of plasma cell-free RNA and whole-blood RNA in paired samples yields different but complementary signatures for each disease state. Our work provides a systems-level view of immune responses and tissue damage in COVID-19 and MIS-C and informs future development of new disease biomarkers.


COVID-19 , Cell-Free Nucleic Acids , Nucleic Acids , Humans , Child , COVID-19/genetics , RNA , Biomarkers
3.
J Infect Dis ; 226(10): 1688-1698, 2022 11 11.
Article En | MEDLINE | ID: mdl-36134603

BACKGROUND: As of early 2022, the Omicron variants are the predominant circulating lineages globally. Understanding neutralizing antibody responses against Omicron BA.1 and BA.2 after vaccine breakthrough infections will provide insights into BA.2 infectivity and susceptibility to subsequent reinfection. METHODS: Live virus neutralization assays were used to study immunity against Delta and Omicron BA.1 and BA.2 variants in samples from 86 individuals, 24 unvaccinated (27.9%) and 62 vaccinated (72.1%), who were infected with Delta (n = 42, 48.8%) or BA.1 (n = 44, 51.2%). Among the 62 vaccinated individuals, 39 were unboosted (62.9%), whereas 23 were boosted (37.1%). RESULTS: In unvaccinated infections, neutralizing antibodies (nAbs) against the three variants were weak or undetectable, except against Delta for Delta-infected individuals. Both Delta and BA.1 breakthrough infections resulted in strong nAb responses against ancestral wild-type and Delta lineages, but moderate nAb responses against BA.1 and BA.2, with similar titers between unboosted and boosted individuals. Antibody titers against BA.2 were generally higher than those against BA.1 in breakthrough infections. CONCLUSIONS: These results underscore the decreased immunogenicity of BA.1 compared to BA.2, insufficient neutralizing immunity against BA.2 in unvaccinated individuals, and moderate to strong neutralizing immunity induced against BA.2 in Delta and BA.1 breakthrough infections.


Antibodies, Neutralizing , Vaccines , Humans , Antibodies, Viral
4.
Nature ; 607(7918): 351-355, 2022 07.
Article En | MEDLINE | ID: mdl-35584773

SARS-CoV-2 Delta and Omicron are globally relevant variants of concern. Although individuals infected with Delta are at risk of developing severe lung disease, infection with Omicron often causes milder symptoms, especially in vaccinated individuals1,2. The question arises of whether widespread Omicron infections could lead to future cross-variant protection, accelerating the end of the pandemic. Here we show that without vaccination, infection with Omicron induces a limited humoral immune response in mice and humans. Sera from mice overexpressing the human ACE2 receptor and infected with Omicron neutralize only Omicron, but not other variants of concern, whereas broader cross-variant neutralization was observed after WA1 and Delta infections. Unlike WA1 and Delta, Omicron replicates to low levels in the lungs and brains of infected animals, leading to mild disease with reduced expression of pro-inflammatory cytokines and diminished activation of lung-resident T cells. Sera from individuals who were unvaccinated and infected with Omicron show the same limited neutralization of only Omicron itself. By contrast, Omicron breakthrough infections induce overall higher neutralization titres against all variants of concern. Our results demonstrate that Omicron infection enhances pre-existing immunity elicited by vaccines but, on its own, may not confer broad protection against non-Omicron variants in unvaccinated individuals.


COVID-19 , Cross Protection , SARS-CoV-2 , Vaccination , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Cross Protection/immunology , Cytokines , Humans , Mice , SARS-CoV-2/classification , SARS-CoV-2/immunology , Vaccination/statistics & numerical data
5.
Cell ; 185(9): 1539-1548.e5, 2022 04 28.
Article En | MEDLINE | ID: mdl-35429436

Virus-like particle (VLP) and live virus assays were used to investigate neutralizing immunity against Delta and Omicron SARS-CoV-2 variants in 259 samples from 128 vaccinated individuals. Following Delta breakthrough infection, titers against WT rose 57-fold and 3.1-fold compared with uninfected boosted and unboosted individuals, respectively, versus only a 5.8-fold increase and 3.1-fold decrease for Omicron breakthrough infection. Among immunocompetent, unboosted patients, Delta breakthrough infections induced 10.8-fold higher titers against WT compared with Omicron (p = 0.037). Decreased antibody responses in Omicron breakthrough infections relative to Delta were potentially related to a higher proportion of asymptomatic or mild breakthrough infections (55.0% versus 28.6%, respectively), which exhibited 12.3-fold lower titers against WT compared with moderate to severe infections (p = 0.020). Following either Delta or Omicron breakthrough infection, limited variant-specific cross-neutralizing immunity was observed. These results suggest that Omicron breakthrough infections are less immunogenic than Delta, thus providing reduced protection against reinfection or infection from future variants.


COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines , Humans
6.
Nat Microbiol ; 7(2): 277-288, 2022 02.
Article En | MEDLINE | ID: mdl-35013591

Associations between vaccine breakthrough cases and infection by different SARS coronavirus 2 (SARS-CoV-2) variants have remained largely unexplored. Here we analysed SARS-CoV-2 whole-genome sequences and viral loads from 1,373 persons with COVID-19 from the San Francisco Bay Area from 1 February to 30 June 2021, of which 125 (9.1%) were vaccine breakthrough infections. Vaccine breakthrough infections were more commonly associated with circulating antibody-resistant variants carrying ≥1 mutation associated with decreased antibody neutralization (L452R/Q, E484K/Q and/or F490S) than infections in unvaccinated individuals (78% versus 48%, P = 1.96 × 10-8). Differences in viral loads were non-significant between unvaccinated and fully vaccinated cases overall (P = 0.99) and according to lineage (P = 0.09-0.78). Symptomatic vaccine breakthrough infections had comparable viral loads (P = 0.64), whereas asymptomatic breakthrough infections had decreased viral loads (P = 0.023) compared with infections in unvaccinated individuals. In 5 cases with serial samples available for serologic analyses, vaccine breakthrough infections were found to be associated with low or undetectable neutralizing antibody levels attributable to an immunocompromised state or infection by an antibody-resistant lineage. Taken together, our results show that vaccine breakthrough infections are overrepresented by antibody-resistant SARS-CoV-2 variants, and that symptomatic breakthrough infections may be as efficient in spreading COVID-19 as unvaccinated infections, regardless of the infecting lineage.


Antibodies, Viral/blood , BNT162 Vaccine/immunology , COVID-19/epidemiology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/administration & dosage , COVID-19/immunology , COVID-19 Vaccines/immunology , Cohort Studies , Female , Genome, Viral , Humans , Male , Middle Aged , Mutation , Phylogeny , San Francisco/epidemiology , Vaccination , Viral Load/statistics & numerical data , Whole Genome Sequencing , Young Adult
7.
medRxiv ; 2022 Feb 09.
Article En | MEDLINE | ID: mdl-35075459

SARS-CoV-2 Delta and Omicron strains are the most globally relevant variants of concern (VOCs). While individuals infected with Delta are at risk to develop severe lung disease 1 , Omicron infection causes less severe disease, mostly upper respiratory symptoms 2,3 . The question arises whether rampant spread of Omicron could lead to mass immunization, accelerating the end of the pandemic. Here we show that infection with Delta, but not Omicron, induces broad immunity in mice. While sera from Omicron-infected mice only neutralize Omicron, sera from Delta-infected mice are broadly effective against Delta and other VOCs, including Omicron. This is not observed with the WA1 ancestral strain, although both WA1 and Delta elicited a highly pro-inflammatory cytokine response and replicated to similar titers in the respiratory tracts and lungs of infected mice as well as in human airway organoids. Pulmonary viral replication, pro-inflammatory cytokine expression, and overall disease progression are markedly reduced with Omicron infection. Analysis of human sera from Omicron and Delta breakthrough cases reveals effective cross-variant neutralization induced by both viruses in vaccinated individuals. Together, our results indicate that Omicron infection enhances preexisting immunity elicited by vaccines, but on its own may not induce broad, cross-neutralizing humoral immunity in unvaccinated individuals.

8.
Cell ; 184(13): 3426-3437.e8, 2021 06 24.
Article En | MEDLINE | ID: mdl-33991487

We identified an emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant by viral whole-genome sequencing of 2,172 nasal/nasopharyngeal swab samples from 44 counties in California, a state in the western United States. Named B.1.427/B.1.429 to denote its two lineages, the variant emerged in May 2020 and increased from 0% to >50% of sequenced cases from September 2020 to January 2021, showing 18.6%-24% increased transmissibility relative to wild-type circulating strains. The variant carries three mutations in the spike protein, including an L452R substitution. We found 2-fold increased B.1.427/B.1.429 viral shedding in vivo and increased L452R pseudovirus infection of cell cultures and lung organoids, albeit decreased relative to pseudoviruses carrying the N501Y mutation common to variants B.1.1.7, B.1.351, and P.1. Antibody neutralization assays revealed 4.0- to 6.7-fold and 2.0-fold decreases in neutralizing titers from convalescent patients and vaccine recipients, respectively. The increased prevalence of a more transmissible variant in California exhibiting decreased antibody neutralization warrants further investigation.


Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19/transmission , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Humans , Mutation/genetics , Whole Genome Sequencing/methods
9.
medRxiv ; 2021 Mar 09.
Article En | MEDLINE | ID: mdl-33758899

We identified a novel SARS-CoV-2 variant by viral whole-genome sequencing of 2,172 nasal/nasopharyngeal swab samples from 44 counties in California. Named B.1.427/B.1.429 to denote its 2 lineages, the variant emerged around May 2020 and increased from 0% to >50% of sequenced cases from September 1, 2020 to January 29, 2021, exhibiting an 18.6-24% increase in transmissibility relative to wild-type circulating strains. The variant carries 3 mutations in the spike protein, including an L452R substitution. Our analyses revealed 2-fold increased B.1.427/B.1.429 viral shedding in vivo and increased L452R pseudovirus infection of cell cultures and lung organoids, albeit decreased relative to pseudoviruses carrying the N501Y mutation found in the B.1.1.7, B.1.351, and P.1 variants. Antibody neutralization assays showed 4.0 to 6.7-fold and 2.0-fold decreases in neutralizing titers from convalescent patients and vaccine recipients, respectively. The increased prevalence of a more transmissible variant in California associated with decreased antibody neutralization warrants further investigation.

10.
Sci Adv ; 7(6)2021 02.
Article En | MEDLINE | ID: mdl-33536218

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease-19 (COVID-19), has emerged as the cause of a global pandemic. We used RNA sequencing to analyze 286 nasopharyngeal (NP) swab and 53 whole-blood (WB) samples from 333 patients with COVID-19 and controls. Overall, a muted immune response was observed in COVID-19 relative to other infections (influenza, other seasonal coronaviruses, and bacterial sepsis), with paradoxical down-regulation of several key differentially expressed genes. Hospitalized patients and outpatients exhibited up-regulation of interferon-associated pathways, although heightened and more robust inflammatory responses were observed in hospitalized patients with more clinically severe illness. Two-layer machine learning-based host classifiers consisting of complete (>1000 genes), medium (<100), and small (<20) gene biomarker panels identified COVID-19 disease with 85.1-86.5% accuracy when benchmarked using an independent test set. SARS-CoV-2 infection has a distinct biosignature that differs between NP swabs and WB and can be leveraged for COVID-19 diagnosis.


COVID-19/diagnosis , Nasopharynx/virology , RNA, Viral/metabolism , SARS-CoV-2/genetics , Area Under Curve , COVID-19/metabolism , COVID-19/pathology , COVID-19/virology , Gene Library , Humans , Machine Learning , RNA, Viral/blood , ROC Curve , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Transcriptome
...