Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(9): e0257218, 2021.
Article in English | MEDLINE | ID: mdl-34516576

ABSTRACT

Specific changes identified in the otolith macrostructure of Northeast Arctic cod as "spawning zones" are presumed to represent spawning events, but recent experimental studies have challenged this relationship. Because these zones are not routinely recorded outside of Norway, otoliths from multiple Atlantic cod populations with different life history and environmental traits were first examined to see if spawning zones could be identified as a general characteristic of cod. Then, a large archival collection of cod otoliths was used to investigate temporal changes in the occurrence of spawning zones and test for correlations between maturity at age derived from otolith spawning zones and gonad maturity stages. This study shows that spawning zones likely are a universal trait of Atlantic cod and not limited to certain environments or migratory behaviors as previously proposed. Maturity at age derived from spawning zone data showed trends consistent with those from gonad examinations. However, spawning zones appear to form with a one- or two-year lag with sexual maturity, which is suspected to reflect a stabilizing of energy partitioning after the first spawning events. Our results illustrate the potential for use of spawning zones, for example in species or populations with limited available maturity data, and highlights the need for addressing the physiological processes behind their formation.


Subject(s)
Gadus morhua/physiology , Reproduction/physiology , Animals , Atlantic Ocean , Norway
2.
PLoS One ; 16(4): e0248711, 2021.
Article in English | MEDLINE | ID: mdl-33793572

ABSTRACT

The isotopic composition of inorganic carbon in otoliths (δ13Coto) can be a useful tracer of metabolic rates and a method to study ecophysiology in wild fish. We evaluated environmental and physiological sources of δ13Coto variation in Icelandic and Northeast Arctic (NEA) cod (Gadus morhua) over the years 1914-2013. Individual annual growth increments of otoliths formed at age 3 and 8 were micromilled and measured by isotope-ratio mass spectrometry. Simultaneously, all annual increment widths of the otoliths were measured providing a proxy of fish somatic growth. We hypothesized that changes in the physiological state of the organism, reflected by the isotopic composition of otoliths, can affect the growth rate. Using univariate and multivariate mixed-effects models we estimated conditional correlations between carbon isotopic composition and growth of fish at different levels (within individuals, between individuals, and between years), controlling for intrinsic and extrinsic effects on both otolith measurements. δ13Coto was correlated with growth within individuals and between years, which was attributed to the intrinsic effects (fish age or total length). There was no significant correlation between δ13Coto and growth between individuals, which suggests that caution is needed when interpreting δ13Coto signals. We found a significant decrease in δ13Coto through the century which was explained by the oceanic Suess effect-admixture of isotopically light carbon from fossil fuel. We calculated the proportion of the respired carbon in otolith carbonate (Cresp) using carbon isotopic composition in diet and dissolved inorganic carbon of the seawater. This approach allowed us to correct the values for each stock in relation to these two environmental baselines. Cresp was on average 0.275 and 0.295 in Icelandic and NEA stock, respectively. Our results provide an insight into the physiological basis for differences in growth characteristics between these two cod stocks, and how that may vary over time.


Subject(s)
Basal Metabolism , Carbon Isotopes/analysis , Diet , Gadus morhua/metabolism , Otolithic Membrane/metabolism , Animals , Fishes/metabolism , Iceland , Mass Spectrometry/methods , Oceans and Seas
3.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Article in English | MEDLINE | ID: mdl-33827928

ABSTRACT

The mode and extent of rapid evolution and genomic change in response to human harvesting are key conservation issues. Although experiments and models have shown a high potential for both genetic and phenotypic change in response to fishing, empirical examples of genetic responses in wild populations are rare. Here, we compare whole-genome sequence data of Atlantic cod (Gadus morhua) that were collected before (early 20th century) and after (early 21st century) periods of intensive exploitation and rapid decline in the age of maturation from two geographically distinct populations in Newfoundland, Canada, and the northeast Arctic, Norway. Our temporal, genome-wide analyses of 346,290 loci show no substantial loss of genetic diversity and high effective population sizes. Moreover, we do not find distinct signals of strong selective sweeps anywhere in the genome, although we cannot rule out the possibility of highly polygenic evolution. Our observations suggest that phenotypic change in these populations is not constrained by irreversible loss of genomic variation and thus imply that former traits could be reestablished with demographic recovery.


Subject(s)
Biomass , Gadus morhua/genetics , Genomic Instability , Polymorphism, Genetic , Animals , Atlantic Ocean , Evolution, Molecular , Gadus morhua/physiology
4.
Sci Rep ; 10(1): 16708, 2020 10 07.
Article in English | MEDLINE | ID: mdl-33028859

ABSTRACT

Otolith biochronologies combine growth records from individual fish to produce long-term growth sequences, which can help to disentangle individual from population-level responses to environmental variability. This study assessed individual thermal plasticity of Atlantic cod (Gadus morhua) growth in Icelandic waters based on measurements of otolith increments. We applied linear mixed-effects models and developed a century-long growth biochronology (1908-2014). We demonstrated interannual and cohort-specific changes in the growth of Icelandic cod over the last century which were mainly driven by temperature variation. Temperature had contrasting relationships with growth-positive for the fish during the youngest ages and negative during the oldest ages. We decomposed the effects of temperature on growth observed at the population level into within-individual effects and among-individual effects and detected significant individual variation in the thermal plasticity of growth. Variance in the individual plasticity differed across cohorts and may be related to the mean environmental conditions experienced by the group. Our results underscore the complexity of the relationships between climatic conditions and the growth of fish at both the population and individual level, and highlight the need to distinguish between average population responses and growth plasticity of the individuals for accurate growth predictions.


Subject(s)
Gadus morhua/growth & development , Otolithic Membrane/growth & development , Temperature , Age Factors , Animals , Iceland
5.
Glob Chang Biol ; 26(10): 5661-5678, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32741054

ABSTRACT

Marine ecosystems, particularly in high-latitude regions such as the Arctic, have been significantly affected by human activities and contributions to climate change. Evaluating how fish populations responded to past changes in their environment is helpful for evaluating their future patterns, but is often hindered by the lack of long-term biological data available. Using otolith increments of Northeast Arctic cod (Gadus morhua) as a proxy for individual growth, we developed a century-scale biochronology (1924-2014) based on the measurements of 3,894 fish, which revealed significant variations in cod growth over the last 91 years. We combined mixed-effect modeling and path analysis to relate these growth variations to selected climate, population and fishing-related factors. Cod growth was negatively related to cod population size and positively related to capelin population size, one of the most important prey items. This suggests that density-dependent effects are the main source of growth variability due to competition for resources and cannibalism. Growth was also positively correlated with warming sea temperatures but negatively correlated with the Atlantic Multidecadal Oscillation, suggesting contrasting effects of climate warming at different spatial scales. Fishing pressure had a significant but weak negative direct impact on growth. Additionally, path analysis revealed that the selected growth factors were interrelated. Capelin biomass was positively related to sea temperature and negatively influenced by herring biomass, while cod biomass was mainly driven by fishing mortality. Together, these results give a better understanding of how multiple interacting factors have shaped cod growth throughout a century, both directly and indirectly.


Subject(s)
Climate Change , Gadus morhua , Animals , Arctic Regions , Ecosystem , Fisheries , Humans , Population Dynamics
6.
PLoS One ; 10(6): e0130847, 2015.
Article in English | MEDLINE | ID: mdl-26101885

ABSTRACT

Otolith shape analysis of Atlantic herring (Clupea harengus) in Norwegian waters shows significant differentiation among fjords and a latitudinal gradient along the coast where neighbouring populations are more similar to each other than to those sampled at larger distances. The otolith shape was obtained using quantitative shape analysis, the outlines were transformed with Wavelet and analysed with multivariate methods. The observed morphological differences are likely to reflect environmental differences but indicate low dispersal among the local herring populations. Otolith shape variation suggests also limited exchange between the local populations and their oceanic counterparts, which could be due to differences in spawning behaviour. Herring from the most northerly location (69°N) in Balsfjord, which is genetically more similar to Pacific herring (Clupea pallasii), differed in otolith shape from all the other populations. Our results suggest that the semi-enclosed systems, where the local populations live and breed, are efficient barriers for dispersal. Otolith shape can thus serve as a marker to identify the origin of herring along the coast of Norway.


Subject(s)
Fishes/anatomy & histology , Otolithic Membrane/ultrastructure , Animal Migration , Animals , Atlantic Ocean , Crosses, Genetic , Estuaries , Female , Fishes/classification , Image Processing, Computer-Assisted , Lakes , Male , Multivariate Analysis , Norway , Population Dynamics , Seasons , Sexual Behavior, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...