Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(38): 89559-89580, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37454008

ABSTRACT

Many environmental monitoring works have been carried out using biomarkers as a tool to identify the effects of oil contamination on marine organisms; however, only a few studies have used sea urchin gonadal tissue for this purpose. Within this context, the present work aimed to understand the impact of an oil spill, proposing the use of sea urchin gonadal tissue as a biomarker for environmental contamination by trace metals in the species Paracentrotus lividus. Biometric analysis, quantification analyses of the elements Cd, Pb, Ni, Fe, Mn, Zn, and Cu, as well as histopathological evaluations were performed in gonads of P. lividus collected from an area affected by hydrocarbons, named as impacted shore (IS) and an area not affected, named reference shore (RS). The results showed that carapace diameter (DC), total wet weight (WW), and Cd concentrations in the gonads were significantly influenced by the interaction between the rocky shores of origin, the months of sampling, and by the sex of the individuals. Moreover, from July until September, the levels of Zn and Cd were significantly lower in male than in female gonads. In July (the month of the oil spill), the indexes of histopathological alterations (IHPA) of membrane dilation were significantly higher in individuals from the IS, compared to the individuals from the RS. In addition, there were significant correlations between biometric variables (wet weight, diameter of carapace, gonadal weight, and gonadosomatic index) and the elements Cd, Cu, Ni, and Mn concentrations. Lastly, a delay in the gametogenic cycle of the sea urchins from IS was also observed. Taken together, these findings suggest that direct exposure to trace metals induces histopathological lesions in P. lividus' gonads and affects its reproductive cycle.


Subject(s)
Paracentrotus , Trace Elements , Humans , Animals , Female , Male , Cadmium/analysis , Environmental Pollution/analysis , Gonads/chemistry , Aquatic Organisms , Trace Elements/analysis
2.
Aquat Toxicol ; 252: 106300, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36162202

ABSTRACT

Cadmium (Cd) is considered a priority hazardous substance under the European Community Directive 2013/39 due to its ecotoxicity. The ragworm Hediste diversicolor (O.F. Müller, 1776), a common species in estuaries and coastal lagoons, plays an important ecological role in these ecosystems and is a suitable bioindicator of environmental chemical contamination. In this study, H. diversicolor was chosen as an ecotoxicological model with the aim of evaluating the responses to Cd contamination, considering a multi-biomarker approach (mortality, biometry, behaviour, Cd bioaccumulation, oxidative stress and damage, and energy metabolism). Also, the hypothesis of different tolerances resulting in different responses was evaluated, by collecting worms from three systems distinctly impacted by metal contamination (Mondego estuary, Óbidos Lagoon and Sado estuary - Portugal). Animals were exposed under laboratory conditions to cadmium (10, 50 and 100 µg/L), for 10 days. Significant differences were observed in responses amongst worms originating from the different sites. Organisms from the less impacted systems revealed greater effects on mortality, biomass decrease and burrowing behaviour, as well as higher bioaccumulation potential, after exposure to Cd. Biochemical and behaviour impairments were observed as a consequence of Cd exposure, although not in a concentration-dependant manner. The results obtained in this study reinforce the importance of integrating endpoint responses, at the individual and sub-individual levels, to assess potential changes induced by pollutants in the physiological status and fitness of H. diversicolor and help to predict what their ecological consequences might be.


Subject(s)
Polychaeta , Water Pollutants, Chemical , Animals , Cadmium/toxicity , Cadmium/metabolism , Ecosystem , Environmental Biomarkers , Water Pollutants, Chemical/toxicity , Biomarkers/metabolism , Hazardous Substances/metabolism , Hazardous Substances/pharmacology
3.
Environ Sci Pollut Res Int ; 26(3): 2710-2721, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30484047

ABSTRACT

The main goal of this monitoring program was to evaluate the contamination in the intertidal environment of Óbidos Lagoon by the metals Cd, Pb, and Ni on water, sediments, and on biological samples, using the bivalve Cerastoderma edule (common name: cockle) as a biomonitor. Since C. edule is an edible mollusc, the risk of their consumption by humans from this lagoon was also evaluated. The study was performed in a restricted area of the lagoon-the ML station-where human activities, such as shellfish harvesting, intersect with the natural processes occurring in this system. The results obtained revealed that the water samples were polluted with Cd and Pb with concentrations (0.00025 mg l-1 and 0.0072 mg l-1) above the maximum legislated on the Directive 2008/105/EC, while for Ni, this occurred only on one of the seasons sampled (summer 2010: 0.029 mg l-1). The sediments were not contaminated with Cd and Ni, and the contamination detected for the metal Pb, allowed the classification of this station as an unpolluted site ([Pbmin] = 7.477 mg.kg-1 and [Pbmax] = 19.875 mg.kg-1). On biological samples, comparing the results of metal contaminations with the values of the maximum levels fixed by European Commission Regulation (EC) No 1881/2006 and USFDA, all the results were below the legal value. Therefore, during the period of study, the consumption of this bivalve by humans was safe. Also, BAF and CF calculations suggest that C. edule can be used as a biomonitor to determine the source of the contaminations. This study supported the use of C. edule as a biomonitor to assess the contamination by the metals Pb and Ni at the Óbidos Lagoon and allowed to predict the potential transfer of metals to higher trophic levels with potential impacts on the natural and human communities.


Subject(s)
Cardiidae/metabolism , Environmental Monitoring , Water Pollutants, Chemical/analysis , Animals , Environmental Monitoring/methods , Geologic Sediments/chemistry , Humans , Metals/analysis , Portugal , Seasons , Shellfish/analysis
4.
Environ Sci Pollut Res Int ; 23(2): 1960-9, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26611628

ABSTRACT

A seasonal environmental monitoring program was carried out (winter 2009 to summer 2010) to evaluate the spatial and seasonal cadmium concentrations in the intertidal environments of the Óbidos Lagoon (Portugal). Also, some environmental parameters were monitored at each sampling station. Both the water and the sediment samples were contaminated, although to different degrees. In general, cadmium contamination appears to be mostly focused on the inner areas of the lagoon, namely, in Barrosa's arm, which receives a small tributary contaminated by agro-industrial activities. Only cadmium concentration in sediment showed to be significantly influenced by seasons. Some environmental parameters presented spatial and temporal heterogeneity which influenced, to some extent, cadmium bioavailability. The results of this study allow a better understanding of the environmental quality of this ecosystem regarding cadmium contamination and may assist in the definition of future coastal management measures specifically targeted to trace metal contamination and pollution monitoring.


Subject(s)
Cadmium/analysis , Geologic Sediments/analysis , Seawater/analysis , Water Pollutants, Chemical/analysis , Ecosystem , Environmental Monitoring , Portugal , Seasons
5.
Environ Sci Pollut Res Int ; 22(20): 15598-609, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26013743

ABSTRACT

The cadmium phytoremediation capacity of the halophyte plant Bolboschoenus maritimus (L.) Palla and the influence of water salinity were assessed in a greenhouse experiment, in order to better understand the bioremediation capacity of this plant. Three concentrations of cadmium (0, 50 and 100 µg l(-1)) and four salinity conditions (0, 5, 10 and 20) were chosen to evaluate the cadmium accumulation, in order to test these plants as a potential phytoremediation tool in brackish environments. The cadmium content in water and plants (underground organs, stems and leaves) was analysed with graphite furnace atomic absorption spectrometry. All the plants submitted to salinity 20 and in the three cadmium treatments died. The plants' survival was highest in the lowest salinities, where highest growth and biomasses were also obtained. The plants presented more cadmium content in the rhizomes, followed by stems and even less in leaves. The salt stress of the plants interfered with their cadmium accumulation capacity. The highest cadmium accumulation in the rhizomes occurred at salinity 0, while the salinities 0 and 5 were the most adequate for stems and leaves. The experiment pointed out that B. maritimus represents a good possible intervenient for cadmium bioremediation in freshwater and low salinity brackish water environments, but its use is limited in the habitats of higher salinity.


Subject(s)
Cadmium/metabolism , Cyperaceae/metabolism , Salt-Tolerant Plants/metabolism , Water Pollutants, Chemical/metabolism , Water Purification/methods , Biodegradation, Environmental , Cadmium/isolation & purification , Cyperaceae/chemistry , Cyperaceae/growth & development , Plant Leaves/chemistry , Plant Leaves/metabolism , Portugal , Salinity , Salt-Tolerant Plants/chemistry , Salt-Tolerant Plants/growth & development , Sodium Chloride/metabolism , Water Pollutants, Chemical/isolation & purification
6.
Mar Environ Res ; 92: 197-205, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24176185

ABSTRACT

The major aim of this study was to evaluate the capacity of Salicornia ramosissima on Cadmium phytoremediation under distinct salinities and, consequently, the toxic effects on the plant's development. A greenhouse experiment was performed, using two Cd concentrations (50 and 100 µg l(-1)) in different salinities (0, 5 and 10). Mortality and weight variation, observed at the end of the experiment, showed significant differences between some treatments, meaning that these variables were affected by the salinity and Cd concentrations. The highest Cd accumulation was detected in the roots, and decreased with the increase of salinity and Cd concentration. S. ramosissima is a potential candidate for Cd phytoremediation at salinities close to 0 and its capabilities in Cd phytoaccumulation and phytoestabilization proved to be quite interesting. The optimization of phytoremediation processes by S. ramosissima could turn possible the use of this plant in the recovery of contaminated ecosystems.


Subject(s)
Cadmium/toxicity , Chenopodiaceae/growth & development , Chenopodiaceae/metabolism , Water Pollutants, Chemical/toxicity , Biodegradation, Environmental , Cadmium/pharmacokinetics , Chenopodiaceae/drug effects , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Salinity , Survival , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL