Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Neuropsychol Adult ; : 1-8, 2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36420766

ABSTRACT

This study examines CTE-related knowledge and information-seeking behaviors of caregivers of persons who are at high risk of CTE. Online survey responses were collected from 64 females, ages 18-74, who were married to former college, semiprofessional, or professional football players and were fluent in English. Ranging from 0 to 18, a score was calculated to represent level of CTE knowledge. Participants were classified into groups based on their spouse's reported symptoms and diagnosis. Approximately 87% of participants reported that their spouses have been diagnosed with a football-related concussion and were significantly more likely to seek out information from a healthcare provider, a scientific journal or article, and post/comment on social media compared to spouses of symptomatic/undiagnosed and non-symptomatic groups. Participants reported 77% of available information as probably true, with social media thought to be highly credible. Highest levels of dissatisfaction were reported for league-sponsored websites and physicians/healthcare providers. Although the majority of participants sought CTE related information on regular or social media, and the internet, information sources differed amongst the groups. These findings may help healthcare providers and organizations develop more effective health-related educational programs that will help the wives make informed decisions regarding care for their spouses with respect to CTE.

2.
Neuropharmacology ; 97: 414-25, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25896767

ABSTRACT

Carisoprodol is a widely prescribed muscle relaxant, abuse of which has grown considerably in recent years. It directly activates and allosterically modulates α1ß2γ2 GABAARs, although the site(s) of action are unknown. To gain insight into the actions of carisoprodol, subunit-dependent effects of this drug were assessed. Whole-cell patch clamp recordings were obtained from HEK293 cells expressing α1ß2, α1ß3 or αxßzγ2 (where x = 1-6 and z = 1-3) GABAARs, and in receptors incorporating the δ subunit (modeling extrasynaptic receptors). The ability to directly gate and allosterically potentiate GABA-gated currents was observed for all configurations. Presence or absence of the γ2 subunit did not affect the ability of carisoprodol to directly gate or allosterically modulate the receptor. Presence of the ß1 subunit conferred highest efficacy for direct activation relative to maximum GABA currents, while presence of the ß2 subunit conferred highest efficacy for allosteric modulation of the GABA response. With regard to α subunits, carisoprodol was most efficacious at enhancing the actions of GABA in receptors incorporating the α1 subunit. The ability to directly gate the receptor was generally comparable regardless of the α subunit isoform, although receptors incorporating the α3 subunit showed significantly reduced direct gating efficacy and affinity. In extrasynaptic (α1ß3δ and α4ß3δ) receptors, carisoprodol had greater efficacy than GABA as a direct gating agonist. In addition, carisoprodol allosterically potentiated both EC20 and saturating GABA concentrations in these receptors. In assessing voltage-dependence, we found direct gating and inhibitory effects were insensitive to membrane voltage, whereas allosteric modulatory effects were affected by membrane voltage. Our findings demonstrate direct and allosteric effects of carisoprodol at synaptic and extrasynpatic GABAARs and that subunit isoform influences these effects.


Subject(s)
Carisoprodol/pharmacology , GABA Agents/pharmacology , Muscle Relaxants, Central/pharmacology , Receptors, GABA-A/metabolism , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Membrane Potentials/drug effects , Membrane Potentials/physiology , Patch-Clamp Techniques , Receptors, GABA-A/genetics , Substance-Related Disorders/metabolism , Transfection , gamma-Aminobutyric Acid/metabolism
3.
J Pharmacol Exp Ther ; 329(2): 827-37, 2009 May.
Article in English | MEDLINE | ID: mdl-19244096

ABSTRACT

Carisoprodol is a frequently prescribed muscle relaxant. In recent years, this drug has been increasingly abused. The effects of carisoprodol have been attributed to its metabolite, meprobamate, a controlled substance that produces sedation via GABA(A) receptors (GABA(A)Rs). Given the structural similarities between carisoprodol and meprobamate, we used electrophysiological and behavioral approaches to investigate whether carisoprodol directly affects GABA(A)R function. In whole-cell patch-clamp studies, carisoprodol allosterically modulated and directly activated human alpha1beta2gamma2 GABA(A)R function in a barbiturate-like manner. At millimolar concentrations, inhibitory effects were apparent. Similar allosteric effects were not observed for homomeric rho1 GABA or glycine alpha1 receptors. In the absence of GABA, carisoprodol produced picrotoxin-sensitive, inward currents that were significantly larger than those produced by meprobamate, suggesting carisoprodol may directly produce GABAergic effects in vivo. When administered to mice via intraperitoneal or oral routes, carisoprodol elicited locomotor depression within 8 to 12 min after injection. Intraperitoneal administration of meprobamate depressed locomotor activity in the same time frame. In drug discrimination studies with carisoprodol-trained rats, the GABAergic ligands pentobarbital, chlordiazepoxide, and meprobamate each substituted for carisoprodol in a dose-dependent manner. In accordance with findings in vitro, the discriminative stimulus effects of carisoprodol were antagonized by a barbiturate antagonist, bemegride, but not by the benzodiazepine site antagonist, flumazenil. The results of our studies in vivo and in vitro collectively suggest the barbiturate-like effects of carisoprodol may not be due solely to its metabolite, meprobamate. Furthermore, the functional traits we have identified probably contribute to the abuse potential of carisoprodol.


Subject(s)
Behavior, Animal/drug effects , Carisoprodol/pharmacology , GABA Modulators/pharmacology , Receptors, GABA-A/metabolism , Allosteric Regulation , Allosteric Site , Animals , Carisoprodol/chemistry , Cell Line , Discrimination Learning/drug effects , Dose-Response Relationship, Drug , GABA Modulators/chemistry , Humans , Male , Membrane Potentials/drug effects , Meprobamate/chemistry , Meprobamate/pharmacology , Mice , Motor Activity/drug effects , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Receptors, GABA-A/genetics , Structure-Activity Relationship , Transfection
4.
Mol Cell Pharmacol ; 1(4): 180-186, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-20419052

ABSTRACT

Soma(®) (carisoprodol) is an increasingly abused, centrally-acting muscle relaxant. Despite the prevalence of carisoprodol abuse, its mechanism of action remains unclear. Its sedative effects, which contribute to its therapeutic and recreational use, are generally attributed to the actions of its primary metabolite, meprobamate, at GABA(A) receptors (GABA(A)R). Meprobamate is a controlled substance at the federal level; ironically, carisoprodol is not currently classified as such. Using behavioral and molecular pharmacological approaches, we recently demonstrated carisoprodol, itself, is capable of modulating GABA(A)R function in a manner similar to central nervous system depressants. Its functional similarities with this highly addictive class of drugs may contribute to the abuse potential of carisoprodol. The site of action of carisoprodol has not been identified; based on our studies, interaction with benzodiazepine or barbiturate sites is unlikely. These recent findings, when coupled with numerous reports in the literature, support the contention that the non-controlled status of carisoprodol should be reevaluated.

SELECTION OF CITATIONS
SEARCH DETAIL
...