Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 6(2)2015 Apr 14.
Article in English | MEDLINE | ID: mdl-25873380

ABSTRACT

UNLABELLED: We studied the flocculation mechanism at the molecular level by determining the atomic structures of N-Flo1p and N-Lg-Flo1p in complex with their ligands. We show that they have similar ligand binding mechanisms but distinct carbohydrate specificities and affinities, which are determined by the compactness of the binding site. We characterized the glycans of Flo1p and their role in this binding process and demonstrate that glycan-glycan interactions significantly contribute to the cell-cell adhesion mechanism. Therefore, the extended flocculation mechanism is based on the self-interaction of Flo proteins and this interaction is established in two stages, involving both glycan-glycan and protein-glycan interactions. The crucial role of calcium in both types of interaction was demonstrated: Ca(2+) takes part in the binding of the carbohydrate to the protein, and the glycans aggregate only in the presence of Ca(2+). These results unify the generally accepted lectin hypothesis with the historically first-proposed "Ca(2+)-bridge" hypothesis. Additionally, a new role of cell flocculation is demonstrated; i.e., flocculation is linked to cell conjugation and mating, and survival chances consequently increase significantly by spore formation and by introduction of genetic variability. The role of Flo1p in mating was demonstrated by showing that mating efficiency is increased when cells flocculate and by differential transcriptome analysis of flocculating versus nonflocculating cells in a low-shear environment (microgravity). The results show that a multicellular clump (floc) provides a uniquely organized multicellular ultrastructure that provides a suitable microenvironment to induce and perform cell conjugation and mating. IMPORTANCE: Yeast cells can form multicellular clumps under adverse growth conditions that protect cells from harsh environmental stresses. The floc formation is based on the self-interaction of Flo proteins via an N-terminal PA14 lectin domain. We have focused on the flocculation mechanism and its role. We found that carbohydrate specificity and affinity are determined by the accessibility of the binding site of the Flo proteins where the external loops in the ligand-binding domains are involved in glycan recognition specificity. We demonstrated that, in addition to the Flo lectin-glycan interaction, glycan-glycan interactions also contribute significantly to cell-cell recognition and interaction. Additionally, we show that flocculation provides a uniquely organized multicellular ultrastructure that is suitable to induce and accomplish cell mating. Therefore, flocculation is an important mechanism to enhance long-term yeast survival.


Subject(s)
Cell Adhesion , Conjugation, Genetic , Flocculation , Mannose-Binding Lectins/metabolism , Microbial Viability , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/physiology , Calcium/metabolism , Cations, Divalent/metabolism , Gene Expression Profiling , Mannose-Binding Lectins/chemistry , Models, Molecular , Molecular Sequence Data , Polysaccharides/analysis , Protein Binding , Saccharomyces cerevisiae Proteins/chemistry , Sequence Analysis, DNA
2.
Biotechnol Lett ; 35(6): 891-900, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23417260

ABSTRACT

Genomics, transcriptomics, proteomics and fluxomics are powerful omics-technologies that play a major role in today's research. For each of these techniques good sample quality is crucial. Major factors contributing to the quality of a sample is the actual sampling procedure itself and the way the sample is stored directly after sampling. It has already been described that RNAlater can be used to store tissues and cells in a way that the RNA quality and quantity are preserved. In this paper, we demonstrate that quaternary ammonium salts (RNAlater) are also suitable to preserve and store samples from Saccharomyces cerevisiae for later use with the four major omics-technologies. Moreover, it is shown that RNAlater also preserves the cell morphology and the potential to recover growth, permitting microscopic analysis and yeast cell culturing at a later stage.


Subject(s)
Preservation, Biological/methods , Quaternary Ammonium Compounds/metabolism , Specimen Handling/methods , Saccharomyces cerevisiae/drug effects
3.
Protein Expr Purif ; 88(1): 114-9, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23247087

ABSTRACT

Saccharomyces cerevisiae flocculation is governed by FLO genes, encoding Flo proteins (flocculins). Flo proteins are cell wall proteins consisting of three domains, sticking out of the cell wall and interacting with other yeast cells using their N-terminal mannose-binding domain. Until recently, flocculation research was focused on the genetic and cellular level. To extend the knowledge about flocculation to the protein level, we isolated the N-terminal domain of the Flo1p (N-Flo1p) that contains the mannose-binding domain, which is responsible for the strong interaction (flocculation) of S. cerevisiae cells. To obtain a high production yield and a more uniform and lower glycosylation of N-Flo1p, it was cloned in Pichia pastoris. The expression and the purification of N-Flo1p were optimised towards a one-step purification protocol. The activity of the protein, i.e. the binding of the purified protein to mannose using fluorescence spectroscopy, was demonstrated.


Subject(s)
Mannose-Binding Lectins/genetics , Mannose-Binding Lectins/isolation & purification , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/isolation & purification , Saccharomyces cerevisiae/genetics , Cloning, Molecular , Flocculation , Glycosylation , Mannose/metabolism , Mannose-Binding Lectins/biosynthesis , Pichia , Protein Binding , Protein Structure, Tertiary , Saccharomyces cerevisiae Proteins/biosynthesis , Spectrometry, Fluorescence
4.
FEMS Yeast Res ; 12(1): 78-87, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22129043

ABSTRACT

The expression of the Flo11 flocculin in Saccharomyces cerevisiae offers the cell a wide range of phenotypes, depending on the strain and the environmental conditions. The most important are pseudohyphae development, invasive growth and flocculation. The mechanism of cellular adhesion mediated by Flo11p is not well understood. Therefore, the N-terminal domain of Flo11p was purified and studied. Although its amino acid sequence shows less similarity with the other flocculins, Flo11p belongs to the flocculin family. However, the N-terminal domain contains the 'Flo11-domain' (PF10181), but not the mannose-binding PA14 domain, which is present in the other flocculins (Flo1p, Flo5p, Flo9p and Flo10p). Structural and binding properties of the N-terminal domain of Flo11p were studied. It is shown that this domain is O-glycosylated and is structurally composed mainly of ß-sheets, which is typical for the members of the flocculin family. Furthermore, fluorescence spectroscopy binding studies revealed that N-Flo11p does not bind mannose, which is in contrast to the other Flo proteins. However, surface plasmon resonance analysis showed that N-Flo11p self-interacts and explains the cell-cell interaction capacity of FLO11-expressing cells.


Subject(s)
Cell Adhesion , Mannose/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/physiology , Binding Sites , Glycosylation , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Protein Processing, Post-Translational , Protein Structure, Tertiary , Saccharomyces cerevisiae/metabolism , Spectrum Analysis , Surface Plasmon Resonance
5.
Mol Microbiol ; 80(6): 1667-79, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21585565

ABSTRACT

The opportunistic pathogen Candida albicans expresses on its surface Als (Agglutinin like sequence) proteins, which play an important role in the adhesion to host cells and in the development of candidiasis. The binding specificity of these proteins is broad, as they can bind to various mammalian proteins, such as extracellular matrix proteins, and N- and E-cadherins. The N-terminal part of Als proteins constitutes the substrate-specific binding domain and is responsible for attachment to epithelial and endothelial cells. We have used glycan array screening to identify possible glycan receptors for the binding domain of Als1p-N. Under those conditions, Als1p-N binds specifically to fucose-containing glycans, which adds a lectin function to the functional diversity of the Als1 protein. The binding between Als1p-N and BSA-fucose glycoconjugate was quantitatively characterized using surface plasmon resonance, which demonstrated a weak millimolar affinity between Als1p-N and fucose. Furthermore, we have also quantified the affinity of Als1p-N to the extracellular matrix proteins proteins fibronectin and laminin, which is situated in the micromolar range. Surface plasmon resonance characterization of Als1p-N-Als1p-N interaction was in the micromolar affinity range.


Subject(s)
Candida albicans/metabolism , Fucose/metabolism , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Polysaccharides/metabolism , Amino Acid Sequence , Candida albicans/chemistry , Candida albicans/genetics , Fungal Proteins/genetics , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary
6.
Eukaryot Cell ; 10(1): 110-7, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21076009

ABSTRACT

Saccharomyces cerevisiae cells possess a remarkable capacity to adhere to other yeast cells, which is called flocculation. Flocculation is defined as the phenomenon wherein yeast cells adhere in clumps and sediment rapidly from the medium in which they are suspended. These cell-cell interactions are mediated by a class of specific cell wall proteins, called flocculins, that stick out of the cell walls of flocculent cells. The N-terminal part of the three-domain protein is responsible for carbohydrate binding. We studied the N-terminal domain of the Flo1 protein (N-Flo1p), which is the most important flocculin responsible for flocculation of yeast cells. It was shown that this domain is both O and N glycosylated and is structurally composed mainly of ß-sheets. The binding of N-Flo1p to D-mannose, α-methyl-D-mannoside, various dimannoses, and mannan confirmed that the N-terminal domain of Flo1p is indeed responsible for the sugar-binding activity of the protein. Moreover, fluorescence spectroscopy data suggest that N-Flo1p contains two mannose carbohydrate binding sites with different affinities. The carbohydrate dissociation constants show that the affinity of N-Flo1p for mono- and dimannoses is in the millimolar range for the binding site with low affinity and in the micromolar range for the binding site with high affinity. The high-affinity binding site has a higher affinity for low-molecular-weight (low-MW) mannose carbohydrates and no affinity for mannan. However, mannan as well as low-MW mannose carbohydrates can bind to the low-affinity binding site. These results extend the cellular flocculation model on the molecular level.


Subject(s)
Mannans/metabolism , Mannose-Binding Lectins/metabolism , Mannose/metabolism , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Flocculation , Glycosylation , Mannose-Binding Lectins/chemistry , Protein Binding , Protein Processing, Post-Translational , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Fusion Proteins/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Spectrometry, Fluorescence , Titrimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...