Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 171
Filter
1.
Wellcome Open Res ; 9: 205, 2024.
Article in English | MEDLINE | ID: mdl-39157428

ABSTRACT

Background: Hospital admission due to breathlessness carries a significant burden to patients and healthcare systems, particularly impacting people in low-income countries. Prompt appropriate treatment is vital to improve outcomes, but this relies on accurate diagnostic tests which are of limited availability in resource-constrained settings. We will provide an accurate description of acute breathlessness presentations in a multicentre prospective cohort study in Malawi, a low resource setting in Southern Africa, and explore approaches to strengthen diagnostic capacity. Objectives: Primary objective: Delineate between causes of breathlessness among adults admitted to hospital in Malawi and report disease prevalence. Secondary objectives : Determine patient outcomes, including mortality and hospital readmission 90 days after admission; determine the diagnostic accuracy of biomarkers to differentiate between heart failure and respiratory infections (such as pneumonia) including brain natriuretic peptides, procalcitonin and C-reactive protein. Methods: This is a prospective longitudinal cohort study of adults (≥18 years) admitted to hospital with breathlessness across two hospitals: 1) Queen Elizabeth Central Hospital, Blantyre, Malawi; 2) Chiradzulu District Hospital, Chiradzulu, Malawi. Patients will be consecutively recruited within 24 hours of emergency presentation and followed-up until 90 days from hospital admission. We will conduct enhanced diagnostic tests with robust quality assurance and quality control to determine estimates of disease pathology. Diagnostic case definitions were selected following a systematic literature search. Discussion: This study will provide detailed epidemiological description of adult hospital admissions due to breathlessness in low-income settings, which is currently poorly understood. We will delineate between causes using established case definitions and conduct nested diagnostic evaluation. The results have the potential to facilitate development of interventions targeted to strengthen diagnostic capacity, enable prompt and appropriate treatment, and ultimately improve both patient care and outcomes.


BACKGROUND: People admitted to hospital with symptoms of breathlessness are often severely ill and need quick, accurate assessment to facilitate timely initiation of appropriate treatments. In low resource settings, such as Malawi, limited access to diagnostic equipment impedes patient assessment. Failure to identify and treat the underlying diagnosis may lead to preventable death. AIMS: This cohort study aims to delineate between common, treatable causes of breathlessness among adult patients admitted to hospital in Malawi and measure survival. We will also evaluate the performance of blood markers to diagnose and differentiate between conditions. The results will help us develop context-appropriate diagnostic and treatment algorithms based on resources available in the health system Methods in brief: We will recruit adult patients who present to hospital with breathlessness in a central national referral hospital (Queen Elizabeth Central Hospital, Blantyre), and a district hospital (Chiradzulu District Hospital, Chiradzulu). We will conduct enhanced diagnostic tests to determine causes of breathlessness against internationally accepted diagnostic guidelines. Patients will be followed up throughout their hospital admission and after discharge, until 90 days. INTERPRETATION: This study aligns with World Health Assembly resolutions on 'Strengthening diagnostics capacity' and on 'Integrated emergency, critical and operative care for universal health coverage and protection from health emergencies'. The results of this study will have the potential to facilitate development of interventions targeted to strengthen diagnostic capacity, enable prompt and appropriate treatment, and ultimately improve care and outcomes for acutely unwell patients.

2.
J Infect Dis ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984706

ABSTRACT

BACKGROUND: In Malawi, the national pneumococcal conjugate vaccine (PCV13) demonstrated less herd immunity than the USA, likely due to higher natural pneumococcal carriage rates. We assessed PCV13 efficacy against experimental pneumococcal carriage in healthy Malawian adults. We explored how natural carriage (pneumococcal carriage of any other serotype apart from 6B) influenced experimental carriage rates and vaccine efficacy. METHODS: Healthy adults aged 18-40 were randomly assigned PCV13 (n=98) or saline (n=106), followed by intranasal SPN 6B inoculation at 20,000 (n=40), 80,000 (n=74), or 160,000 (n=90) CFU/100µl, 28 days post-vaccination. We evaluated natural and experimental pneumococcal carriage before and after vaccination on days 2, 7, and 14 post-inoculation using culture and multiplex qPCR targeting lytA/cpsA genes and compared carriage rates by vaccination status. RESULTS: Of 204 participants, 19.6% (40) exhibited experimental carriage, detected by culture and 25.5% (52) by qPCR. Vaccinated individuals had lower experimental carriage rates (10.2%, n=10/98) compared to the placebo group (28.3%, n=30/106). This difference in vaccine efficacy was more pronounced in participants without natural carriage (PCV13=8% n=6/75 vs. placebo=25.9%, n=21/81) compared to those with natural carriage (PCV13=14.8%, n=4/27 vs. placebo=26.5%, n=9/34). Using a log-binomial model, vaccine effectiveness (VE) was 62%, whether assessed by culture or qPCR. Natural carriers had a lower VE of 52% compared to participants with no natural carriage (VE=69%). CONCLUSION: We have shown that PCV13 VE estimate (62%) is robust whether carriage is assessed by culture or qPCR. PCV13 had lower VE in natural carriers compared to those without natural carriage at the inoculation visit.

3.
Mucosal Immunol ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950826

ABSTRACT

Streptococcus pneumoniae colonization in the upper respiratory tract is linked to pneumococcal disease development, predominantly affecting young children and older adults. As the global population ages and comorbidities increase, there is a heightened concern about this infection. We investigated the immunological responses of older adults to pneumococcal-controlled human infection by analyzing the cellular composition and gene expression in the nasal mucosa. Our comparative analysis with data from a concurrent study in younger adults revealed distinct gene expression patterns in older individuals susceptible to colonization, highlighted by neutrophil activation and elevated levels of CXCL9 and CXCL10. Unlike younger adults challenged with pneumococcus, older adults did not show recruitment of monocytes into the nasal mucosa following nasal colonization. However, older adults who were protected from colonization showed increased degranulation of cluster of differentiation 8+ T cells, both before and after pneumococcal challenge. These findings suggest age-associated cellular changes, in particular enhanced mucosal inflammation, that may predispose older adults to pneumococcal colonization.

4.
J Infect Dis ; 230(2): e457-e464, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38709726

ABSTRACT

Tools to evaluate and accelerate tuberculosis (TB) vaccine development are needed to advance global TB control strategies. Validated human infection studies for TB have the potential to facilitate breakthroughs in understanding disease pathogenesis, identify correlates of protection, develop diagnostic tools, and accelerate and de-risk vaccine and drug development. However, key challenges remain for realizing the clinical utility of these models, which require further discussion and alignment among key stakeholders. In March 2023, the Wellcome Trust and the International AIDS Vaccine Initiative convened international experts involved in developing both TB and bacillus Calmette-Guérin (BCG) human infection studies (including mucosal and intradermal challenge routes) to discuss the status of each of the models and the key enablers to move the field forward. This report provides a summary of the presentations and discussion from the meeting. Discussions identified key issues, including demonstrating model validity, to provide confidence for vaccine developers, which may be addressed through demonstration of known vaccine effects (eg, BCG vaccination in specific populations), and by comparing results from field efficacy and human infection studies. The workshop underscored the importance of establishing safe and acceptable studies in high-burden settings, and the need to validate >1 model to allow for different scientific questions to be addressed as well as to provide confidence to vaccine developers and regulators around use of human infection study data in vaccine development and licensure pathways.


Subject(s)
Tuberculosis Vaccines , Tuberculosis , Humans , Tuberculosis/prevention & control , Tuberculosis/immunology , Tuberculosis Vaccines/immunology , Tuberculosis Vaccines/administration & dosage , Vaccine Development , BCG Vaccine/immunology , BCG Vaccine/administration & dosage , Mycobacterium tuberculosis/immunology , Animals
5.
Wellcome Open Res ; 9: 2, 2024.
Article in English | MEDLINE | ID: mdl-38362541

ABSTRACT

Background: As well as suffering a high burden of pneumococcal disease people living with HIV (PLHIV) may contribute to community transmission in sub-Saharan African (sSA) settings. Pneumococcal vaccination is not currently offered to PLHIV in sSA but may prevent disease and reduce transmission. More evidence of vaccine effectiveness against carriage in PLHIV is needed. An Experimental Human Pneumococcal Carriage model (EHPC) has been safely and acceptably used in healthy adults in Malawi to evaluate pneumococcal vaccines against carriage and to identify immune correlates of protection from carriage. This study will establish the same model in PLHIV and will be the first controlled human infection model (CHIM) in this key population. Methods: Healthy participants with and without HIV will be inoculated intranasally with Streptococcus pneumoniae serotype 6B. Sequential cohorts will be challenged with increasing doses to determine the optimal safe challenge dose to establish experimental carriage. Nasal fluid, nasal mucosal, and blood samples will be taken before inoculation and on days 2, 7, 14, and 21 following inoculation to measure pneumococcal carriage density and identify immune correlates of protection from carriage. The vast majority of natural pneumococcal carriage events in PLHIV do not result in invasive disease and no invasive disease is expected in this study. However, robust participant safety monitoring is designed to identify signs of invasive disease early should they develop, and to implement treatment immediately. Participants will complete a Likert-style questionnaire at study-end to establish acceptability. Interpretations: We expect the EHPC model to be safely and acceptably implemented in PLHIV. The CHIM can then be used to accelerate pneumococcal vaccine evaluations in this population, and an evidence-based pneumococcal vaccination policy for PLHIV in sSA.

6.
BMJ Open ; 14(1): e075948, 2024 01 10.
Article in English | MEDLINE | ID: mdl-38199622

ABSTRACT

INTRODUCTION: Since the introduction of pneumococcal conjugate vaccines, pneumococcal disease rates have declined for many vaccine-type serotypes. However, serotype 3 (SPN3) continues to cause significant disease and is identified in colonisation epidemiological studies as one of the top circulating serotypes in adults in the UK. Consequently, new vaccines that provide greater protection against SPN3 colonisation/carriage are urgently needed. The Experimental Human Pneumococcal Challenge (EHPC) model is a unique method of determining pneumococcal colonisation rates, understanding acquired immunity, and testing vaccines in a cost-effective manner. To enhance the development of effective pneumococcal vaccines against SPN3, we aim to develop a new relevant and safe SPN3 EHPC model with high attack rates which could be used to test vaccines using small sample size. METHODS AND ANALYSIS: This is a human challenge study to establish a new SPN3 EHPC model, consisting of two parts. In the dose-ranging/safety study, cohorts of 10 healthy participants will be challenged with escalating doses of SPN3. If first challenge does not lead into colonisation, participants will receive a second challenge 2 weeks after. Experimental nasopharyngeal (NP) colonisation will be determined using nasal wash sampling. Using the dose that results in ≥50% of participants being colonised, with a high safety profile, we will complete the cohort with another 33 participants to check for reproducibility of the colonisation rate. The primary outcome of this study is to determine the optimal SPN3 dose and inoculation regime to establish the highest rates of NP colonisation in healthy adults. Secondary outcomes include determining density and duration of experimental SPN3 NP colonisation and characterising mucosal and systemic immune responses to SPN3 challenge. ETHICS AND DISSEMINATION: This study is approved by the NHS Research and Ethics Committee (reference 22/NW/0051). Findings will be published in peer-reviewed journals and reports will be made available to participants.


Subject(s)
Adaptive Immunity , Pneumococcal Vaccines , Adult , Humans , Healthy Volunteers , Serogroup , Reproducibility of Results , Streptococcus pneumoniae
7.
Lancet Microbe ; 4(9): e683-e691, 2023 09.
Article in English | MEDLINE | ID: mdl-37659418

ABSTRACT

BACKGROUND: The effect of childhood pneumococcal conjugate vaccine implementation in Malawi is threatened by absence of herd effect. There is persistent vaccine-type pneumococcal carriage in both vaccinated children and the wider community. We aimed to use a human infection study to measure 13-valent pneumococcal conjugate vaccine (PCV13) efficacy against pneumococcal carriage. METHODS: We did a double-blind, parallel-arm, randomised controlled trial investigating the efficacy of PCV13 or placebo against experimental pneumococcal carriage of Streptococcus pneumoniae serotype 6B (strain BHN418) among healthy adults (aged 18-40 years) from Blantyre, Malawi. We randomly assigned participants (1:1) to receive PCV13 or placebo. PCV13 and placebo doses were prepared by an unmasked pharmacist to maintain research team and participant masking with identification only by a randomisation identification number and barcode. 4 weeks after receiving either PCV13 or placebo, participants were challenged with 20 000 colony forming units (CFUs) per naris, 80 000 CFUs per naris, or 160 000 CFUs per naris by intranasal inoculation. The primary endpoint was experimental pneumococcal carriage, established by culture of nasal wash at 2, 7, and 14 days. Vaccine efficacy was estimated per protocol by means of a log-binomial model adjusting for inoculation dose. The trial is registered with the Pan African Clinical Trials Registry, PACTR202008503507113, and is now closed. FINDINGS: Recruitment commenced on April 27, 2021 and the final visit was completed on Sept 12, 2022. 204 participants completed the study protocol (98 PCV13, 106 placebo). There were lower carriage rates in the vaccine group at all three inoculation doses (0 of 21 vs two [11%] of 19 at 20 000 CFUs per naris; six [18%] of 33 vs 12 [29%] of 41 at 80 000 CFUs per naris, and four [9%] of 44 vs 16 [35%] of 46 at 160 000 CFUs per naris). The overall carriage rate was lower in the vaccine group compared with the placebo group (ten [10%] of 98 vs 30 [28%] of 106; Fisher's p value=0·0013) and the vaccine efficacy against carriage was estimated at 62·4% (95% CI 27·7-80·4). There were no severe adverse events related to vaccination or inoculation of pneumococci. INTERPRETATION: This is, to our knowledge, the first human challenge study to test the efficacy of a pneumococcal vaccine against pneumococcal carriage in Africa, which can now be used to establish vaccine-induced correlates of protection and compare alternative strategies to prevent pneumococcal carriage. This powerful tool could lead to new means to enhance reduction in pneumococcal carriage after vaccination. FUNDING: Wellcome Trust.


Subject(s)
Pneumococcal Vaccines , Streptococcus pneumoniae , Adult , Child , Humans , Malawi/epidemiology , Vaccines, Conjugate , Serogroup , Pneumococcal Vaccines/therapeutic use
8.
Bull World Health Organ ; 101(9): 558-570G, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37638357

ABSTRACT

Objective: To estimate the prevalence of individual chronic conditions and multimorbidity among adults admitted to hospital in countries in sub-Saharan Africa. Methods: We systematically searched MEDLINE®, Embase®, Global Index Medicus, Global Health and SciELO for publications reporting on patient cohorts recruited between 1 January 2010 and 12 May 2023. We included articles reporting prevalence of pre-specified chronic diseases within unselected acute care services (emergency departments or medical inpatient settings). No language restrictions were applied. We generated prevalence estimates using random-effects meta-analysis alongside 95% confidence intervals, 95% prediction intervals and I2 statistics for heterogeneity. To explore associations with age, sex, country-level income status, geographical region and risk of bias, we conducted pre-specified meta-regression, sub-group and sensitivity analyses. Findings: Of 6976 identified studies, 61 met the inclusion criteria, comprising data from 20 countries and 376 676 people. None directly reported multimorbidity, but instead reported prevalence for individual conditions. Among medical admissions, the highest prevalence was human immunodeficiency virus infection (36.4%; 95% CI: 31.3-41.8); hypertension (24.4%; 95% CI: 16.7-34.2); diabetes (11.9%; 95% CI: 9.9-14.3); heart failure (8.2%; 95% CI: 5.6-11.9); chronic kidney disease (7.7%; 95% CI: 3.9-14.7); and stroke (6.8%; 95% CI: 4.7-9.6). Conclusion: Among patients seeking hospital care in sub-Saharan Africa, multimorbidity remains poorly described despite high burdens of individual chronic diseases. Prospective public health studies of multimorbidity burden are needed to generate integrated and context-specific health system interventions that act to maximize patient survival and well-being.


Subject(s)
Chronic Disease , Delivery of Health Care , Patients , Adult , Humans , Africa South of the Sahara/epidemiology , Hospitals , Prospective Studies
9.
Am J Respir Crit Care Med ; 208(8): 868-878, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37556679

ABSTRACT

Rationale: Pneumococcal pneumonia remains a global health problem. Pneumococcal colonization increases local and systemic protective immunity, suggesting that nasal administration of live attenuated Streptococcus pneumoniae (Spn) strains could help prevent infections. Objectives: We used a controlled human infection model to investigate whether nasopharyngeal colonization with attenuated S. pneumoniae strains protected against recolonization with wild-type (WT) Spn (SpnWT). Methods: Healthy adults aged 18-50 years were randomized (1:1:1:1) for nasal administration twice (at a 2-wk interval) with saline solution, WT Spn6B (BHN418), or one of two genetically modified Spn6B strains, SpnA1 (Δfhs/piaA) or SpnA3 (ΔproABC/piaA) (Stage I). After 6 months, participants were challenged with SpnWT to assess protection against the homologous serotype (Stage II). Measurements and Main Results: 125 participants completed both study stages per intention to treat. No serious adverse events were reported. In Stage I, colonization rates were similar among groups: SpnWT, 58.1% (18 of 31); SpnA1, 60% (18 of 30); and SpnA3, 59.4% (19 of 32). Anti-Spn nasal IgG levels after colonization were similar in all groups, whereas serum IgG responses were higher in the SpnWT and SpnA1 groups than in the SpnA3 group. In colonized individuals, increases in IgG responses were identified against 197 Spn protein antigens and serotype 6 capsular polysaccharide using a pangenome array. Participants given SpnWT or SpnA1 in Stage I were partially protected against homologous challenge with SpnWT (29% and 30% recolonization rates, respectively) at stage II, whereas those exposed to SpnA3 achieved a recolonization rate similar to that in the control group (50% vs. 47%, respectively). Conclusions: Nasal colonization with genetically modified live attenuated Spn was safe and induced protection against recolonization, suggesting that nasal administration of live attenuated Spn could be an effective strategy for preventing pneumococcal infections. Clinical trial registered with the ISRCTN registry (ISRCTN22467293).


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Adult , Humans , Virulence , Nose , Pneumococcal Infections/prevention & control , Immunization , Antibodies, Bacterial , Immunoglobulin G , Pneumococcal Vaccines/therapeutic use
10.
Intensive Care Med ; 49(7): 772-784, 2023 07.
Article in English | MEDLINE | ID: mdl-37428213

ABSTRACT

There is a high burden of critical illness in low-income countries (LICs), adding pressure to already strained health systems. Over the next decade, the need for critical care is expected to grow due to ageing populations with increasing medical complexity; limited access to primary care; climate change; natural disasters; and conflict. In 2019, the 72nd World Health Assembly emphasised that an essential part of universal health coverage is improved access to effective emergency and critical care and to "ensure the timely and effective delivery of life-saving health care services to those in need". In this narrative review, we examine critical care capacity building in LICs from a health systems perspective. We conducted a systematic literature search, using the World Heath Organisation (WHO) health systems framework to structure findings within six core components or "building blocks": (1) service delivery; (2) health workforce; (3) health information systems; (4) access to essential medicines and equipment; (5) financing; and (6) leadership and governance. We provide recommendations using this framework, derived from the literature identified in our review. These recommendations are useful for policy makers, health service researchers and healthcare workers to inform critical care capacity building in low-resource settings.


Subject(s)
Delivery of Health Care , Health Workforce , Humans , Critical Care , Systems Analysis , Health Resources
11.
Front Med (Lausanne) ; 10: 1148334, 2023.
Article in English | MEDLINE | ID: mdl-37138744

ABSTRACT

Knowing the target oxygen saturation (SpO2) range that results in the best outcomes for acutely hypoxemic adults is important for clinical care, training, and research in low-income and lower-middle income countries (collectively LMICs). The evidence we have for SpO2 targets emanates from high-income countries (HICs), and therefore may miss important contextual factors for LMIC settings. Furthermore, the evidence from HICs is mixed, amplifying the importance of specific circumstances. For this literature review and analysis, we considered SpO2 targets used in previous trials, international and national society guidelines, and direct trial evidence comparing outcomes using different SpO2 ranges (all from HICs). We also considered contextual factors, including emerging data on pulse oximetry performance in different skin pigmentation ranges, the risk of depleting oxygen resources in LMIC settings, the lack of access to arterial blood gases that necessitates consideration of the subpopulation of hypoxemic patients who are also hypercapnic, and the impact of altitude on median SpO2 values. This process of integrating prior study protocols, society guidelines, available evidence, and contextual factors is potentially useful for the development of other clinical guidelines for LMIC settings. We suggest that a goal SpO2 range of 90-94% is reasonable, using high-performing pulse oximeters. Answering context-specific research questions, such as an optimal SpO2 target range in LMIC contexts, is critical for advancing equity in clinical outcomes globally.

12.
PLoS One ; 18(5): e0284399, 2023.
Article in English | MEDLINE | ID: mdl-37141259

ABSTRACT

INTRODUCTION: Experimental Human Pneumococcal Challenge (EHPC) involves the controlled exposure of adults to a specific antibiotic-sensitive Streptococcus pneumoniae serotype, to induce nasopharyngeal colonisation for the purpose of vaccine research. The aims are to review comprehensively the safety profile of EHPC, explore the association between pneumococcal colonisation and frequency of safety review and describe the medical intervention required to undertake such studies. METHODS: A single-centre review of all EHPC studies performed 2011-2021. All recorded serious adverse events (SAE) in eligible studies are reported. An unblinded meta-analysis of collated anonymised individual patient data from eligible EHPC studies was undertaken to assess the association between experimental pneumococcal colonisation and the frequency of safety events following inoculation. RESULTS: In 1416 individuals (median age 21, IQR 20-25), 1663 experimental pneumococcal inoculations were performed. No pneumococcal-related SAE have occurred. 214 safety review events were identified with 182 (12.85%) participants presenting with symptoms potentially in keeping with pneumococcal infection, predominantly in pneumococcal colonised individuals (colonised = 96/658, non-colonised = 86/1005, OR 1.81 (95% CI 1.28-2.56, P = <0.001). The majority were mild (pneumococcal group = 72.7% [120/165 reported symptoms], non-pneumococcal = 86.7% [124/143 reported symptoms]). 1.6% (23/1416) required antibiotics for safety. DISCUSSION: No SAEs were identified directly relating to pneumococcal inoculation. Safety review for symptoms was infrequent but occurred more in experimentally colonised participants. Most symptoms were mild and resolved with conservative management. A small minority required antibiotics, notably those serotype 3 inoculated. CONCLUSION: Outpatient human pneumococcal challenge can be conducted safely with appropriate levels of safety monitoring procedures in place.


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Adult , Humans , Young Adult , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/adverse effects , Nasopharynx , Anti-Bacterial Agents/adverse effects
13.
Wellcome Open Res ; 8: 71, 2023.
Article in English | MEDLINE | ID: mdl-37007907

ABSTRACT

Background: Tuberculosis (TB) remains a major challenge in many domains including diagnosis, pathogenesis, prevention, treatment, drug resistance and long-term protection of the public health by vaccination. A controlled human infection model (CHIM) could potentially facilitate breakthroughs in each of these domains but has so far been considered impossible owing to technical and safety concerns. Methods: A systematic review of mycobacterial human challenge studies was carried out to evaluate progress to date, best possible ways forward and challenges to be overcome. We searched MEDLINE (1946 to current) and CINAHL (1984 to current) databases; and Google Scholar to search citations in selected manuscripts. The final search was conducted 3 rd February 2022. Inclusion criteria: adults ≥18 years old; administration of live mycobacteria; and interventional trials or cohort studies with immune and/or microbiological endpoints. Exclusion criteria: animal studies; studies with no primary data; no administration of live mycobacteria; retrospective cohort studies; case-series; and case-reports. Relevant tools (Cochrane Collaboration for RCTs and Newcastle-Ottawa Scale for non-randomised studies) were used to assess risk of bias and present a narrative synthesis of our findings. Results: The search identified 1,388 titles for review; of these 90 were reviewed for inclusion; and 27 were included. Of these, 15 were randomised controlled trials and 12 were prospective cohort studies. We focussed on administration route, challenge agent and dose administered for data extraction. Overall, BCG studies including fluorescent BCG show the most immediate utility, and genetically modified Mycobacteria tuberculosis is the most tantalising prospect of discovery breakthrough. Conclusions: The TB-CHIM development group met in 2019 and 2022 to consider the results of the systematic review, to hear presentations from many of the senior authors whose work had been reviewed and to consider best ways forward. This paper reports both the systematic review and the deliberations. Registration: PROSPERO ( CRD42022302785; 21 January 2022).

14.
PLOS Glob Public Health ; 3(2): e0001537, 2023.
Article in English | MEDLINE | ID: mdl-36963027

ABSTRACT

We carried out a qualitative study to gain a deeper understanding of the social context of the Cooking and Pneumonia Study (CAPS) and implications for implementation of clean cooking and similar interventions. Such initiatives are recognised as complex, power-laden processes, which has consequences for outcomes and uptake. However, understanding of how precarious livelihoods and unequal power differentials impact on trials of technology is limited and potentially hampers the achievement of the SDGs including SDG 7, Affordable and Clean Energy. An in-depth exploration of experiences and perceptions of cooking and cookstove use within CAPS was completed using qualitative methods and the participatory methodology Photovoice. Ten CAPS participants from each of five villages participated in Photovoice activities and five village representatives were interviewed. Twelve fieldworkers participated in gender specific focus groups and four were interviewed. A thematic content approach was used for data analysis. The analysis showed that economic and power inequity underpinned the complex social relationships within CAPS impacting on trial participation, perceptions of the cookstoves, and on the potential of the intervention to affect health and other benefits. Power can be understood as relational and productive within the research environment. This is illustrated by an analysis of the role of fieldworkers and community representatives who needed to negotiate resistance to trial compliance decisions, including 'satanic' rumours about cookstoves and blood-taking. Transformative approaches that challenge existing power inequities are needed to maximise the success and beneficence of cookstove and other health promoting interventions, and achievement of the SDGs.

15.
BMC Infect Dis ; 23(1): 79, 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36750921

ABSTRACT

BACKGROUND: Compared to the abundance of clinical and genomic information available on patients hospitalised with COVID-19 disease from high-income countries, there is a paucity of data from low-income countries. Our aim was to explore the relationship between viral lineage and patient outcome. METHODS: We enrolled a prospective observational cohort of adult patients hospitalised with PCR-confirmed COVID-19 disease between July 2020 and March 2022 from Blantyre, Malawi, covering four waves of SARS-CoV-2 infections. Clinical and diagnostic data were collected using an adapted ISARIC clinical characterization protocol for COVID-19. SARS-CoV-2 isolates were sequenced using the MinION™ in Blantyre. RESULTS: We enrolled 314 patients, good quality sequencing data was available for 55 patients. The sequencing data showed that 8 of 11 participants recruited in wave one had B.1 infections, 6/6 in wave two had Beta, 25/26 in wave three had Delta and 11/12 in wave four had Omicron. Patients infected during the Delta and Omicron waves reported fewer underlying chronic conditions and a shorter time to presentation. Significantly fewer patients required oxygen (22.7% [17/75] vs. 58.6% [140/239], p < 0.001) and steroids (38.7% [29/75] vs. 70.3% [167/239], p < 0.001) in the Omicron wave compared with the other waves. Multivariable logistic-regression demonstrated a trend toward increased mortality in the Delta wave (OR 4.99 [95% CI 1.0-25.0 p = 0.05) compared to the first wave of infection. CONCLUSIONS: Our data show that each wave of patients hospitalised with SARS-CoV-2 was infected with a distinct viral variant. The clinical data suggests that patients with severe COVID-19 disease were more likely to die during the Delta wave.


Subject(s)
COVID-19 , Adult , Humans , SARS-CoV-2 , Malawi , Cohort Studies , Data Accuracy
16.
Arch Dis Child ; 108(5): 350-356, 2023 05.
Article in English | MEDLINE | ID: mdl-36549867

ABSTRACT

OBJECTIVES: We studied neonates with suspected early-onset sepsis (EOS, sepsis developing in the first 72 hours after delivery) in Malawi to (1) describe clinical characteristics and microbiological findings, (2) identify which patient characteristics may be associated with pathogen positivity on blood culture, and (3) describe mortality and its potential determinants. DESIGN: Prospective observational study (May 2018-June 2019). SETTING: Neonatal ward in Queen Elizabeth Central Hospital, the largest government hospital in Malawi. PATIENTS: All neonates with suspected EOS in whom a blood culture was obtained. RESULTS: Out of 4308 neonatal admissions, 1244 (28.9%) had suspected EOS. We included 1149 neonates, of which 109 blood cultures had significant growth (9.5%). The most commonly isolated pathogens were Staphylococcus aureus, Klebsiella pneumoniae, Enterobacter cloacae, Escherichia coli and Acinetobacter baumanii. Many of the Gram negatives were extended-spectrum beta lactamase-producing Enterobacteriaceae, and these were 40-100% resistant to first-line and second-line antimicrobials. Gestational age (GA) of <32 weeks was associated with pathogen-positive blood cultures (<28 weeks: adjusted OR (AOR) 2.72, 95% CI 1.04 to 7.13; 28-32 weeks: AOR 2.26, 95% CI 1.21 to 4.21; p=0.005). Mortality was 17.6% (202/1149) and associated with low birth weight (<1000 g: AOR 47.57, 95% CI 12.59 to 179.81; 1000-1500 g: AOR 11.31, 95% CI 6.97 to 18.36; 1500-2500 g: AOR 2.20, 95% CI 1.42 to 3.39; p<0.001), low Apgar scores at 5 min (0-3: AOR 18.60, 95% CI 8.81 to 39.27; 4-6: AOR 4.41, 95% CI 2.81 to 6.93; p<0.001), positive maternal venereal disease research laboratory status (AOR 2.53, 95% CI 1.25 to 5.12; p=0.001) and congenital anomalies (AOR 7.37, 95% CI 3.61 to 15.05; p<0.001). Prolonged rupture of membranes was inversely associated with mortality (AOR 0.43, 95% CI 0.19 to 0.98; p 0.007). CONCLUSION: In Malawi, EOS was suspected in nearly a third of neonatal admissions and had a high mortality. Ten per cent were culture-confirmed and predicted by low GA. To reduce the impact of suspected neonatal sepsis in least developed countries, improved maternal and antenatal care and development of rapid point of care methods to more accurately guide antimicrobial use could simultaneously improve outcome and reduce antimicrobial resistance.


Subject(s)
Bacteremia , Neonatal Sepsis , Sepsis , Infant, Newborn , Humans , Female , Pregnancy , Infant , Prospective Studies , Malawi/epidemiology , Sepsis/diagnosis , Sepsis/epidemiology , Sepsis/drug therapy , Bacteremia/diagnosis , Bacteremia/drug therapy , Bacteremia/epidemiology , Neonatal Sepsis/diagnosis , Neonatal Sepsis/drug therapy , Neonatal Sepsis/epidemiology , Anti-Bacterial Agents/therapeutic use
18.
Lancet Microbe ; 3(12): e922-e930, 2022 12.
Article in English | MEDLINE | ID: mdl-36335953

ABSTRACT

BACKGROUND: The burden of antimicrobial resistance is a major threat to global health; however, prospective clinical outcome data from Africa are scarce. In Malawi, third-generation cephalosporins are the antibiotics of choice in patients admitted to hospital despite a rapid proliferation of resistance to these drugs. We aimed to quantify the effect of resistance to third-generation cephalosporins on mortality and length of hospital stay among patients with bloodstream infections. METHODS: We did a prospective cohort study of patients admitted to Queen Elizabeth Central Hospital in Blantyre, Malawi. Patients of all ages who had positive blood cultures for Enterobacterales were included, with the exception of those from the genus Salmonella, and were followed up for 180 days. We characterised blood culture isolates using whole-genome sequencing and used Cox regression models to estimate the effect of resistance to third-generation cephalosporins on length of hospital stay, in-hospital mortality, and survival. FINDINGS: Between Jan 31, 2018, and Jan 13, 2020, we recruited 326 patients, from whom 220 (68%) of 326 isolates were resistant to third-generation cephalosporins. The case fatality proportion was 45% (99 of 220) in patients with bloodstream infections that were resistant to third-generation cephalosporins, and 34% (36 of 106) in patients with bloodstream infections that were sensitive to third-generation cephalosporins. Resistance to third-generation cephalosporins was associated with an increased probability of in-hospital mortality (hazard ratio [HR] 1·44, 95% CI 1·02-2·04), longer hospital stays (1·5 days, 1·0-2·0) and decreased probability of discharge alive (HR 0·31, 0·22-0·45). Whole-genome sequencing showed a high diversity of sequence types of both Escherichia coli and Klebsiella pneumoniae. Although isolates associated with death were distributed across clades, we identified three E coli clades (ST410, ST617, and ST648) that were isolated from 14 patients who all died. INTERPRETATION: Resistance to third-generation cephalosporins is associated with increased mortality and longer hospital stays in patients with bloodstream infections in Malawi. These data show the urgent need for allocation of resources towards antimicrobial resistance mitigation strategies in Africa. FUNDING: Wellcome Trust and Wellcome Asia and Africa Programme.


Subject(s)
Bacteremia , Sepsis , Humans , Escherichia coli , Prospective Studies , Bacteremia/drug therapy , Malawi/epidemiology , Anti-Bacterial Agents/pharmacology , Sepsis/drug therapy , Cephalosporins/pharmacology , Morbidity
19.
Vaccine ; 40(50): 7201-7210, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36210249

ABSTRACT

Childhood pneumococcal conjugate vaccine (PCV) protects against invasive pneumococcal disease caused by vaccine-serotype (VT) Streptococcus pneumoniae by generating opsonophagocytic anti-capsular antibodies, but how vaccination protects against and reduces VT carriage is less well understood. Using serological samples from PCV-vaccinated Malawian individuals and a UK human challenge model, we explored whether antibody quality (IgG subclass, opsonophagocytic killing, and avidity) is associated with protection from carriage. Following experimental challenge of adults with S. pneumoniae serotype 6B, 3/21 PCV13-vaccinees were colonised with pneumococcus compared to 12/24 hepatitis A-vaccinated controls; PCV13-vaccination induced serotype-specific IgG, IgG1, and IgG2, and strong opsonophagocytic responses. However, there was no clear relationship between antibody quality and protection from carriage or carriage intensity after vaccination. Similarly, among PCV13-vaccinated Malawian infants there was no relationship between serotype-specific antibody titre or quality and carriage through exposure to circulating serotypes. Although opsonophagocytic responses were low in infants, antibody titre and avidity to circulating serotypes 19F and 6A were maintained or increased with age. These data suggest a complex relationship between antibody-mediated immunity and pneumococcal carriage, and that PCV13-driven antibody quality may mature with age and exposure.


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Humans , Child , Infant , Adult , Child, Preschool , Antibody Formation , Pneumococcal Vaccines , Pneumococcal Infections/prevention & control , Vaccines, Conjugate , Vaccination , Immunoglobulin G , Nasopharynx
20.
medRxiv ; 2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35860218

ABSTRACT

Background: Compared to the abundance of clinical and genomic information available on patients hospitalised with COVID-19 disease from high-income countries, there is a paucity of data from low-income countries. Our aim was to explore the relationship between viral lineage and patient outcome. Methods: We enrolled a prospective observational cohort of adult patients hospitalised with PCR-confirmed COVID-19 disease between July 2020 and March 2022 from Blantyre, Malawi, covering four waves of SARS-CoV-2 infections. Clinical and diagnostic data were collected using an adapted ISARIC clinical characterization protocol for COVID-19. SARS-CoV-2 isolates were sequenced using the MinIONâ"¢ in Blantyre. Results: We enrolled 314 patients, good quality sequencing data was available for 55 patients. The sequencing data showed that 8 of 11 participants recruited in wave one had B.1 infections, 6/6 in wave two had Beta, 25/26 in wave three had Delta and 11/12 in wave four had Omicron. Patients infected during the Delta and Omicron waves reported fewer underlying chronic conditions and a shorter time to presentation. Significantly fewer patients required oxygen (22.7% [17/75] vs. 58.6% [140/239], p<0.001) and steroids (38.7% [29/75] vs. 70.3% [167/239], p<0.001) in the Omicron wave compared with the other waves. Multivariable logistic-regression demonstrated a trend toward increased mortality in the Delta wave (OR 4.99 [95% CI 1.0-25.0 p=0.05) compared to the first wave of infection. Conclusions: Our data show that each wave of patients hospitalised with SARS-CoV-2 was infected with a distinct viral variant. The clinical data suggests that patients with severe COVID-19 disease were more likely to die during the Delta wave. Summary: We used genome sequencing to identify the variants of SARS-CoV-2 causing disease in Malawi, and found that each of the four waves was caused by a distinct variant. Clinical investigation suggested that the Delta wave had the highest mortality.

SELECTION OF CITATIONS
SEARCH DETAIL