Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 171
1.
Chem Sci ; 15(14): 5376-5384, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38577367

Distonic radical cations (DRCs) with spatially separated charge and radical sites are expected to show both radical and cationic reactivity at different sites within one molecule. However, such "dual" reactivity has rarely been observed in the condensed phase. Herein we report the isolation of crystalline 1λ2,3λ2-1-phosphonia-3-phosphinyl-cyclohex-4-enes 2a,b˙+, which can be considered delocalized DRCs and were completely characterized by crystallographic, spectroscopic, and computational methods. These DRCs contain a radical and cationic site with seven and six valence electrons, respectively, which are both stabilized via conjugation, yet remain spatially separated. They exhibit reactivity that differs from that of conventional radical cations (CRCs); specifically they show sequential radical and cationic reactivity at separated sites within one molecule in solution.

2.
Nat Commun ; 15(1): 2208, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38467660

Stereodefined vinylboron compounds are important organic synthons. The synthesis of E-1-vinylboron compounds typically involves the addition of a B-H bond to terminal alkynes. The selective generation of the thermodynamically unfavorable Z-isomers remains challenging, necessitating improved methods. Here, such a proficient and cost-effective catalytic system is introduced, comprising a cobalt salt and a readily accessible air-stable CNC pincer ligand. This system enables the transformation of terminal alkynes, even in the presence of bulky substituents, with excellent Z-selectivity. High turnover numbers (>1,600) and turnover frequencies (>132,000 h-1) are achieved at room temperature, and the reaction can be scaled up to 30 mmol smoothly. Kinetic studies reveal a formal second-order dependence on cobalt concentration. Mechanistic investigations indicate that the alkynes exhibit a higher affinity for the catalyst than the alkene products, resulting in exceptional Z-selective performance. Furthermore, a rare time-dependent stereoselectivity is observed, allowing for quantitative conversion of Z-vinylboronate esters to the E-isomers.

3.
Adv Sci (Weinh) ; 11(22): e2400072, 2024 Jun.
Article En | MEDLINE | ID: mdl-38520714

A carbon-rich molecule is synthesized, which mainly contains conjugated sp2 and sp hybridized carbon centers. Alkenyl and alkynyl binding sites are arranged such that this compound serves as ligand to a binuclear metal unit with a RhI─RhI bond. Furthermore, CH units are placed in proximity to the metal centers. The dicationic complex [Rh2(bipy)2{Ph2Ptrop(C≡CCy)2}]2+(OTf-)2 allows to study possible responses of the carbon-framework to redox reactions as well as deprotonation reactions. All products are, whenever possible, characterized by X-ray diffraction (XRD) methods, NMR and EPR spectroscopy as well as electrochemical methods. It is shown that the carbon skeleton of the ligand framework undergoes C─C bond rearrangement reactions of remarkable diversity. In combination with DFT (density functional theory) studies, these results allow to gain insight into the electronic structure changes caused by metal sites in a carbon-rich environment, which may be of relevance for the properties of metal particles on carbon support materials when they are exposed to hydrogen, electrons, or protons.

4.
Chemistry ; 30(20): e202303848, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38312108

A tridentate ligand L with a P,NH,N donor motif was synthesized in few steps from commercially available precursors. Upon reaction with [MnBr(CO)5], an octahedral 18-electron complex [Mn(CO)3(L)]Br (1) is obtained in which L adopts a facial arrangement. After deprotonation of the NH group in the cationic complex unit, a neutral Mn(I) amido complex [Mn(CO)2(L-H)] (2) is formed under loss of CO. Rearrangement of L-H leads to a trigonal bipyramidal structure in which the P and N donor centers are in trans position. Further deprotonation of 2 results in a dep-blue anionic complex fragment [Mn(CO)2(L-2H)]- (3). DFT calculations and a QTAIM analysis show that the amido complex 2 contains a Mn-N bond with partial double bond character and 3 an aromatic MnN2C2 ring. The anion [Mn(CO)2(L-2H)]- reacts with Ph2PH to give a phosphido complex, which serves as phosphide transfer reagent to activated olefins. But the catalytic activity is low. However, the neutral amido complex 2 is an excellent catalyst and with loadings as low as 0.04 mol %, turn over frequencies of >40'000 h-1 can be achieved. Furthermore, secondary and primary alkyl phosphines as well as PH3 can be added in a catalytic hydrophosphination reaction to a wide range of activated olefins such as α,ß-unsaturated aldehydes, ketones, esters, and nitriles. But also, vinyl pyridine and some styrene derivatives are converted into the corresponding phosphanes.

5.
Chem Commun (Camb) ; 60(7): 885-888, 2024 Jan 18.
Article En | MEDLINE | ID: mdl-38165285

Dehydrogenation of ammonia borane to well-defined products is an important but challenging reaction. A dinuclear ruthenium complex with a Ru-Ru bond bearing a diazadiene (dad) unit and olefins as non-innocent ligands catalyzes the highly selective formation of conjugated polycondensed borazine oligomers (BxNxHy), predominantly B21N21H18, the BN analogue of superbenzene.

6.
Chemistry ; 29(67): e202303527, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-37933987

Invited for the cover of this issue are the groups of M. Haas, G. Gescheidt and H. Grützmacher from the Graz University of Technology and the ETH Zürich. The image depicts a phosphorus mine, where the workers are acid chlorides using their shovels and red phosphorus to provide the chemicals necessary to produce novel reagents. Read the full text of the article at 10.1002/chem.202302535.

7.
Chem Sci ; 14(39): 10944-10952, 2023 Oct 11.
Article En | MEDLINE | ID: mdl-37829033

E,Z-isomers display distinct physical properties and chemical reactivities. However, investigations on heavy main group elements remain limited. In this work, we present the isolation and X-ray crystallographic characterization of N-heterocyclic vinyl (NHV) substituted diphosphenes as both E- and Z-isomers (L[double bond, length as m-dash]CH-P[double bond, length as m-dash]P-CH[double bond, length as m-dash]L, E,Z-2b; L = N-heterocyclic carbene). E-2b is thermodynamically more stable and undergoes reversible photo-stimulated isomerization to Z-2b. The less stable Z-isomer Z-2b can be thermally reverted to E-2b. Theoretical studies support the view that this E ↔ Z isomerization proceeds via P[double bond, length as m-dash]P bond rotation, reminiscent of the isomerization observed in alkenes. Furthermore, both E,Z-2b coordinate to an AuCl fragment affording the complex [AuCl(η2-Z-2b)] with the diphosphene ligand in Z-conformation, exclusively. In contrast, E,Z-2b undergo [2 + 4] and [2 + 1] cycloadditions with dienes or diazo compounds, respectively, yielding identical cycloaddition products in which the phosphorus bound NHV groups are in trans-position to each other. DFT calculations provide insight into the E/Z-isomerisation and stereoselective formation of Au(i) complexes and cycloaddition products.

8.
Chemistry ; 29(67): e202302535, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-37701996

Herein, we present a convenient synthesis for symmetrical and mixed substituted tris(acyl)phosphines (TAPs) starting from red phosphorus. All TAPs exhibit a phosphaalkene-acylphosphine equilibrium, which was investigated in detail by variable-temperature (VT) NMR spectroscopy supported by density-functional theory (DFT) calculations. Depending on the substituents, two phosphaalkene derivatives and ten acylphosphine derivatives could be isolated. NMR spectroscopy and single-crystal X-ray crystallography enabled a clear structural assignment of these compounds. Oxidation of selected TAPs led to the formation of the corresponding tris(acyl)phosphine oxides (TAPOs). Furthermore, their spectroscopic properties as well as their photochemistry was investigated. Especially, the TAPO compounds were evaluated for their suitability as photoinitiators by CIDNP spectroscopy, photobleaching measurements and by storage stability tests.

9.
Dalton Trans ; 52(11): 3308-3314, 2023 Mar 14.
Article En | MEDLINE | ID: mdl-36785885

A number of stable group 6 metal complexes bearing 2,4,6-oxy functionalised 1,3,5-triphosphinines, phosphorus containing heterocyclic ligands with a central C3P3 core, were synthesised such that a complete series of [M{P3C3(OX)3}(CO)3] compounds is obtained [M = Cr(0), Mo(0), W(0); X = H, SitBuPh2, B(ipc)2]. In all complexes, the triphosphinine coordinates in a η6-binding mode via the delocalized 6π-system of the ring. The ligand properties can be tuned by changing the substituent on the oxygen centre. The π-electron accepting properties of the ligand increases in the following order: P3C3(OH)3 < P3C3(OSitBuPh2)3 < P3C3(OB(ipc)2)3. This trend is reflected in the structures determined by X-ray crystallography, and the ν(CO) stretching frequencies determined by IR spectroscopy. The collected data raise questions with respect to the frequently made assumption that phosphinines act as stronger π-acceptors with respect to arenes and thereby deplete electron density at the metal centres. With P3C3(OH)3 as an η6-coordinated ligand further molecules can be coordinated in the second coordination sphere via hydrogen bonds, which may be of interest for the construction of coordination polymers.

10.
Chempluschem ; 88(3): e202200451, 2023 Mar.
Article En | MEDLINE | ID: mdl-36786446

The reactivity of the bis(acyl)phosphide ion [P(COR)2 ]- (BAP- , R=Ph, Mes) with silicon halides SiX4 (X=Cl, Br) and pnictogen chlorides ECl3 (E=As, Sb and Bi) was investigated. The reaction with SiX4 leads to the hexacoordinate silanes SiX2 (BAP)2 in which BAP- is coordinated in the chelating κ2 -O,O' mode, analogously to acac- . Unexpectedly, the coordination behaviour of BAP- differs from the one of acac- in the interpnictogen compounds E(BAP)3 (E=As, Sb) in which the formation of E-P bonds is favoured over κ2 -O,O' chelation via the oxygen centres. Finally, the reaction of BiCl3 with three equivalents of Na(BAP) leads to the formation of red, crystalline Bi2 (BAP)4 , an air stable dibismuthine, as product of a redox reaction.

11.
Chemistry ; 29(26): e202203842, 2023 May 08.
Article En | MEDLINE | ID: mdl-36786542

A N-hydroxy succinimide (NHS) ester substituted bis(acyl)phosphane oxide (ACTIVE-BAPO) was prepared by phospha-Michael addition and used for an easy one-step BAPO ligation with substrates containing primary amino groups, such as amino acids, proteins, and poly(amidoamine) (PAMAM) dendrimers. Thereby, a range of new molecular and polymeric photoinitators was obtained. Real-time photo-rheology experiments demonstrated the outstanding efficiency of the PAMAM BAPOs as photoinitiators for free radical polymerization. Remarkably, it is found that PAMAM BAPOs also act as crosslinking agents to convert monofunctional methacrylate monomers into thermosetting networks without any further additives. Depending on the number of the attached BAPOs, thermosets with a different degree of crosslinking and swelling capability in water were obtained.

12.
Angew Chem Int Ed Engl ; 62(13): e202217534, 2023 Mar 20.
Article En | MEDLINE | ID: mdl-36645673

Phosphane, PH3 -a highly pyrophoric and toxic gas-is frequently contaminated with H2 and P2 H4 , which makes its handling even more dangerous. The inexpensive metal-organic framework (MOF) magnesium formate, α-[Mg(O2 CH)2 ], can adsorb up to 10 wt % of PH3 . The PH3 -loaded MOF, PH3 @α-[Mg(O2 CH)2 ], is a non-pyrophoric, recoverable material that even allows brief handling in air, thereby minimizing the hazards associated with the handling and transport of phosphane. α-[Mg(O2 CH)2 ] further plays a critical role in purifying PH3 from H2 and P2 H4 : at 25 °C, H2 passes through the MOF channels without adsorption, whereas PH3 adsorbs readily and only slowly desorbs under a flow of inert gas (complete desorption time≈6 h). Diphosphane, P2 H4 , is strongly adsorbed and trapped within the MOF for at least 4 months. P2 H4 @α-[Mg(O2 CH)2 ] itself is not pyrophoric and is air- and light-stable at room temperature.

13.
Angew Chem Int Ed Engl ; 62(32): e202217749, 2023 Aug 07.
Article En | MEDLINE | ID: mdl-36626283

We review the known chemistry of the cyaphide ion, (C≡P)- . This remarkable diatomic anion has been the subject of study since the late nineteenth century, however its isolation and characterization eluded chemists for almost a hundred years. In this mini-review, we explore the pioneering synthetic experiments that first allowed for its isolation, as well as more recent developments demonstrating that cyaphide transfer is viable in well-established salt-metathesis protocols. The physical properties of the cyaphide ion are also explored in depth, allowing us to compare and contrast the chemistry of this ion with that of its lighter congener cyanide (an archetypal strong field ligand and important organic functional group). Recent studies show that the cyaphide ion has the potential to be used as a versatile chemical regent for the synthesis of novel molecules and materials, hinting at many interesting future avenues of investigation.

14.
Chemistry ; 29(20): e202203632, 2023 Apr 06.
Article En | MEDLINE | ID: mdl-36651842

Decomposition of the environmentally harmful gas nitrous oxide (N2 O) is usually performed thermally or catalytically. Selective catalytic reduction (SCR) is currently the most promising technology for N2 O mitigation, a multicomponent heterogeneous catalytic system that employs reducing agents such as ammonia, hydrogen, hydrocarbons, or a combination thereof. This study reports the first homogenous catalyst that performs the reduction of nitrous oxide employing readily available and cheap light alcohols such as methanol, ethanol or ethylene glycol derivatives. During the reaction, these alcohols are transformed in a dehydrogenative coupling reaction to carboxylate derivatives, while N2 O is converted to N2 and H2 O, later entering the reaction as substrate. The reaction is catalysed by the low-valent dinuclear ruthenium complex [Ru2 H(µ-H)(Me2 dad)(dbcot)2 ] that carries a diazabutadiene, Me2 dad, and two rigid dienes, dbcot, as ligands. The reduction of nitrous oxide proceeds with low catalyst loadings under relatively mild conditions (65-80 °C, 1.4 bar N2 O) achieving turnover numbers of up to 480 and turnover frequencies of up to 56 h-1 .

15.
Angew Chem Int Ed Engl ; 62(14): e202214548, 2023 Mar 27.
Article En | MEDLINE | ID: mdl-36688727

Reaction of the imidazolium-stabilized diphosphete-diide IDP with trityl phosphaalkyne affords a mixture which contains the molecules 1 a and 1 b with a central C3 P3 core, which formally carries a two-fold negative charge. In order to avoid the formation of an antiaromatic 8π electron system within a conjugated dianionic six-membered [C3 P3 ]2- ring, 1 a adopts a bicyclic [3.1.0] and 1 b a tricyclic [2.2.0.0] structure which are in a dynamic equilibrium. 1 a, b can be reversibly oxidized to a triphosphinine dication [5]2+ with a central flat aromatic six-membered C3 P3 ring. This two-electron redox reaction occurs in two single-electron transfer steps via the 7π-radical cation [4]⋅+ , which could also be isolated and fully characterized. The profound reversible structural change observed for the two-electron redox couple [5]2+ /1 a, b is in sharp contrast to the C6 H6 /[C6 H6 ]2- couple, which undergoes only a modest structural deformation.

16.
Chemistry ; 29(1): e202202563, 2023 Jan 02.
Article En | MEDLINE | ID: mdl-36200550

Addition of the P-H bond in bis(mesitoyl)phosphine, HP(COMes)2 (BAPH), to a wide variety of activated carbon-carbon double bonds as acceptors was investigated. While this phospha-Michael addition does not proceed in the absence of an additive or catalyst, excellent results were obtained with stoichiometric basic potassium or caesium salts. Simple amine bases can be employed in catalytic amounts, and tetramethylguanidine (TMG) in particular is an outstanding catalyst that allows the preparation of bis(acyl)phosphines, R-P(COMes)2 , under very mild conditions in excellent yields after only a short time. All phosphines RP(COMes)2 can subsequently be oxidized to the corresponding bis(acyl)phosphane oxides, RPO(COMes)2 , a substance class belonging to the most potent photoinitiators for radical polymerizations known to date. Thus, a simple and highly atom economic method has been found that allows the preparation of a broad range of photoinitiators adapted to their specific field of application even on a large scale.


Oxides , Phosphines , Oxides/chemistry , Stereoisomerism , Phosphines/chemistry , Polymerization
17.
Angew Chem Int Ed Engl ; 61(47): e202211749, 2022 Nov 21.
Article En | MEDLINE | ID: mdl-36152009

Reaction of the imidazolium-substituted iphosphate-diide, (Ipr)2 C2 P2 (IDP), with GeCl2 ⋅ dioxane and KBArF24 [(BarF24 )- =tetrakis[(3,5-trifluoromethyl)phenyl]borate)] afforded the dicationic spherical-aromatic nido-cluster [Ge(η4 -IDP)]2+ ([1]2+ ) (Ipr=1,3-bis(2,6-diisopropylphenyl)imidazolium-2-ylidene). This complex is a rare heavy analogue of the elusive pyramidane [C(η4 -C4 H4 )]. [1]2+ undergoes two reversible one-electron reductions, which yield the radical cation [2]⋅+ and the neutral GeII species 3. Both [2]⋅+ and 3 rearrange in solution forming the 2D aromatic and planar imidazolium-substituted digermolide [4]2+ and germole-diide 5, respectively. Both planar species can be oxidized back to [1]2+ using AgSbF6 . These redox-isomerizations correspond to the fundamental transformation of a 3D aromatic cluster into a 2D aromatic ring compound upon reduction and vice versa. The mechanism of these reactions was elucidated using DFT calculations and cyclic voltammetry experiments.

18.
Chemistry ; 28(47): e202201522, 2022 Aug 22.
Article En | MEDLINE | ID: mdl-35652608

We report here a mechanistic, DFT and catalytic study on a series of Mn(I) complexes 1, 2(a-d), 3, 4. The studies apprehended the requirements for Mn(I) complexes to be active in both asymmetric direct (AH) and transfer hydrogenations (ATH). The investigations disclosed 6 vital factors accelerating the formation of a resting species, which plays a significant role in lowering the activities of the Mn(I) complex 1 in ATH and AH, respectively. In addition, we also report here a base free Mn(I) catalyzed ATH of aryl alkyl ketones with high enantioselectivity (up to 98 % ee) and improved activity. More significantly, a novel and simple single-step process for recycling the resting species from the catalytic leftover has been discovered. Notably, the studies provide evidence for the existence of two different temperature dependent mechanisms for AH and ATH, in contrast to previous studies on related systems.


Ketones , Catalysis , Hydrogenation
19.
Angew Chem Int Ed Engl ; 61(43): e202205371, 2022 Oct 24.
Article En | MEDLINE | ID: mdl-35661524

Reaction of the 6π-electron aromatic four-membered heterocycle (IPr)2 C2 P2 (1) (IPr=1,3-bis(2,6-diisopropylphenyl)-1,3-dihydro-2H-imidazol-2-ylidene) with [Fe2 CO9 ] gives the neutral iron tricarbonyl complex [Fe(CO)3 -η3 -{(IPr)2 C2 P2 }] (2). Oxidation with two equivalents of the ferrocenium salt, [Fe(Cp)2 ](BArF24 ), affords the dicationic tricarbonyl complex [Fe(CO)3 -η4 -{(IPr)2 C2 P2 }](BArF24 )2 (4). The one-electron oxidation proceeds under concomitant loss of one CO ligand to give the paramagnetic dicarbonyl radical cation complex [Fe(CO)2 -η4 -{(IPr)2 C2 P2 }](BArF24 ) (5). Reduction of 5 allows the preparation of the neutral dicarbonyl complex [Fe(CO)2 -η4 -{(IPr)2 C2 P2 }] (6). An analysis by various spectroscopic techniques (57 Fe Mössbauer, EPR) combined with DFT calculations gives insight into differences of the electronic structure within the members of this unique series of iron carbonyl complexes, which can be either described as electron precise or Wade-Mingos clusters.

20.
Dalton Trans ; 51(19): 7622-7629, 2022 May 17.
Article En | MEDLINE | ID: mdl-35510594

The synthesis and reactivity of the heavier group 13 phosphaketene complexes (2,6-Mes2C6H3)2EPCO (1, E = Ga; 2, E = In) were reported. The reaction of 1 and 2 with 1,2,3,4-tetramethylimidazolin-2-ylidene, IMe4, gave rise to the formation of (2,6-Mes2C6H3)2EP(O)C(IMe4) (3, E = Ga; 4 E = In; Mes = mesityl). Subsequent addition of elemental tellurium proceeded via insertion into the E-P bond and provided (2,6-Mes2C6H3)2ETeP(O)C(IMe4) (5, E = Ga; 6, E = In) comprising five-membered ETePCO-heterocycles. Compounds 1-6 were fully characterized by X-ray crystallography and heteronuclear NMR spectroscopy. The electronic structures of 1-6 were studied by DFT calculations and analyses of a complementary set of real-space bonding indicators (AIM, ELI-D, NCI) derived from the electron and pair densities, with focus on the bond characteristics of the PCO fragment.

...