Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Infect Dis ; 10(6): 2172-2182, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38724014

ABSTRACT

Lipoic acid (LA) is an essential cofactor in prokaryotic and eukaryotic organisms, required for the function of several multienzyme complexes such as oxoacid dehydrogenases. Prokaryotes either synthesize LA or salvage it from the environment. The salvage pathway in Staphylococcus aureus includes two lipoate-protein ligases, LplA1 and LplA2, as well as the amidotransferase LipL. In this study, we intended to hijack the salvage pathway by LA analogues that are transferred via LplA2 and LipL to the E2 subunits of various dehydrogenases, thereby resulting in nonfunctional enzymes that eventually impair viability of the bacterium. Initially, a virtual screening campaign was carried out to identify potential LA analogues that bind to LplA2. Three selected compounds affected S. aureus USA300 growth in minimal medium at concentrations ranging from 2.5 to 10 µg/mL. Further analysis of the most potent compound (Lpl-004) revealed its transfer to E2 subunits of dehydrogenase complexes and a negative impact on its functionality. Growth impairment caused by Lpl-004 treatment was restored by adding products of the lipoate-dependent enzyme complexes. In addition, Caenorhabditis elegans infected with LpL-004-treated USA300 demonstrated a significantly expanded lifespan compared to worms infected with untreated bacteria. Our results provide evidence that LA analogues exploiting the LA salvage pathway represent an innovative strategy for the development of novel antimicrobial substances.


Subject(s)
Anti-Bacterial Agents , Staphylococcus aureus , Thioctic Acid , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Caenorhabditis elegans , Peptide Synthases/metabolism , Peptide Synthases/genetics , Staphylococcal Infections/microbiology , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects , Staphylococcus aureus/enzymology , Staphylococcus aureus/genetics , Thioctic Acid/analogs & derivatives , Virulence
2.
ACS Omega ; 7(21): 18103-18109, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35664598

ABSTRACT

6-Methylpyridyl-2-methyl protected tetrazoles can be C-H deprotonated using the turbo-Grignard reagent and involved in the reactions with aldehydes and ketones. The protecting group can be cleaved under reductive electrochemical conditions using Pb bronze as a cathode and Zn as a sacrificial anode.

3.
J Org Chem ; 87(5): 3810-3816, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35081306

ABSTRACT

1N-PMB-protected tetrazole undergoes C-H deprotonation with the turbo Grignard reagent, providing a metalated intermediate with increased stability. This can be used for the reaction with electrophiles such as aldehydes, ketones, Weinreb amides, and iodine. C-H deprotonation with the turbo Grignard reagent is compatible with the PMB-protecting group at the tetrazole, which can be cleaved using oxidative hydrogenolysis and acidic conditions. The method enables the tetrazole functionalization at the fifth position by overcoming the difficulties associated with retro [2 + 3] cycloaddition of the metalated intermediates.

4.
J Enzyme Inhib Med Chem ; 33(1): 1343-1351, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30251899

ABSTRACT

O-acetylserine sulfhydrylase (OASS) is the pyridoxal 5'-phosphate dependent enzyme that catalyses the formation of L-cysteine in bacteria and plants. Its inactivation is pursued as a strategy for the identification of novel antibiotics that, targeting dispensable proteins, holds a great promise for circumventing resistance development. In the present study, we have investigated the reactivity of Salmonella enterica serovar Typhimurium OASS-A and OASS-B isozymes with fluoroalanine derivatives. Monofluoroalanine reacts with OASS-A and OASS-B forming either a stable or a metastable α-aminoacrylate Schiff's base, respectively, as proved by spectral changes. This finding indicates that monofluoroalanine is a substrate analogue, as previously found for other beta-halogenalanine derivatives. Trifluoroalanine caused different and time-dependent absorbance and fluorescence spectral changes for the two isozymes and is associated with irreversible inhibition. The time course of enzyme inactivation was found to be characterised by a biphasic behaviour. Partially distinct inactivation mechanisms for OASS-A and OASS-B are proposed.


Subject(s)
Alanine/analogs & derivatives , Cysteine Synthase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Alanine/chemical synthesis , Alanine/chemistry , Alanine/pharmacology , Cysteine Synthase/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Molecular Structure , Salmonella enterica/enzymology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL