Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Article in English | MEDLINE | ID: mdl-38961273

ABSTRACT

BACKGROUND: American Indian (AI) communities are affected by uranium exposure from abandoned mines and naturally contaminated drinking water. Few studies have evaluated geographical differences across AI communities and the role of dietary exposures. OBJECTIVE: We evaluated differences in urinary uranium levels by diet and geographical area among AI participants from the Northern Plains, the Southern Plains, and the Southwest enrolled in the Strong Heart Family Study (SHFS). METHODS: We used food frequency questionnaires to determine dietary sources related to urinary uranium levels for 1,682 SHFS participants in 2001-2003. We calculated adjusted geometric mean ratios (GMRs) of urinary uranium for an interquartile range (IQR) increase in self-reported food group consumption accounting for family clustering and adjusting for sociodemographic variables and other food groups. We determined the percentage of variability in urinary uranium explained by diet. RESULTS: Median (IQR) urinary uranium levels were 0.027 (0.012, 0.057) µg/g creatinine. Urinary uranium levels were higher in Arizona (median 0.039 µg/g) and North Dakota and South Dakota (median 0.038 µg/g) and lower in Oklahoma (median 0.019 µg/g). The adjusted percent increase (95% confidence interval) of urinary uranium levels per IQR increase in reported food intake was 20% (5%, 36%) for organ meat, 11% (1%, 23%) for cereals, and 14% (1%, 29%) for alcoholic drinks. In analyses stratified by study center, the association with organ meat was specific to North Dakota and South Dakota participants. An IQR increase in consumption of fries and chips was inversely associated with urinary uranium levels -11% (-19%, -3%). Overall, we estimated that self-reported dietary exposures explained 1.71% of variability in urine uranium levels. IMPACT: Our paper provides a novel assessment of self-reported food intake and urinary uranium levels in a cohort of American Indian participants. We identify foods (organ meat, cereals, and alcohol) positively associated with urinary uranium levels, find that organ meat consumption is only associated with urine uranium in North Dakota and South Dakota, and estimate that diet explains relatively little variation in total urinary uranium concentrations. Our findings contribute meaningful data toward a more comprehensive estimation of uranium exposure among Native American communities and support the need for high-quality assessments of water and dust uranium exposures in SHFS communities.

2.
Environ Res ; 233: 116514, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37392826

ABSTRACT

Cadmium and lead are known to interfere with the endocrine function. Thus, hormonally regulated processes such as menarche, menopause and pregnancy are likely influenced by chronic exposure to these metals. In US post-menopausal women, who already completed their reproductive lifespan, we evaluated the association between blood cadmium and lead levels with self-reported reproductive lifespan and personal history of pregnancy loss. We selected 5317 post-menopausal women participating in the National Health and Nutrition Examination Survey (NHANES), 1999-2018. Blood cadmium and lead levels were measured by inductively coupled plasma mass spectrometry. Reproductive lifespan was defined as the number of years between self-reported age at menarche and menopause. Personal history of pregnancy loss was defined as number of self-reported pregnancy losses out of the self-reported number of pregnancies. The fully adjusted mean difference in reproductive lifespan (95% confidence interval [CI]) comparing the 80th to the 20th percentiles of blood cadmium and lead distributions was, respectively, 0.50 (0.10, 0.91) and 0.72 (0.41, 1.03) years. Ever smoker showed stronger association of blood lead with reproductive lifespan. For self-reported pregnancy loss, the corresponding fully adjusted relative prevalence (95% CI) was 1.10 (0.93, 1.31) for cadmium and 1.10 (1.00, 1.21) for lead, and remained similar after additional adjustment for reproductive lifespan. In never smokers, the relative prevalence was 1.07 (1.04, 1.11) and 1.16 (1.05, 1.28) for blood cadmium and lead, respectively. These findings suggest that blood cadmium and lead exposures increase reproductive lifespan and prevalence of pregnancy loss in the general population. Additional studies are needed to improve the understanding of mechanisms and prevention potential of metals-related pregnancy outcomes.


Subject(s)
Abortion, Spontaneous , Cadmium , Pregnancy , Humans , Female , Nutrition Surveys , Lead , Longevity , Self Report , Abortion, Spontaneous/chemically induced , Abortion, Spontaneous/epidemiology
3.
Environ Pollut ; 318: 120851, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36509352

ABSTRACT

The nephrotoxicity of low-chronic metal exposures is unclear, especially considering several metals simultaneously. We assessed the individual and joint association of metals with longitudinal change in renal endpoints in Aragon Workers Health Study participants with available measures of essential (cobalt [Co], copper [Cu], molybdenum [Mo] and zinc [Zn]) and non-essential (As, barium [Ba], Cd, chromium [Cr], antimony [Sb], titanium [Ti], uranium [U], vanadium [V] and tungsten [W]) urine metals and albumin-to-creatinine ratio (ACR) (N = 707) and estimated glomerular filtration rate (eGFR) (N = 1493) change. Median levels were 0.24, 7.0, 18.6, 295, 3.1, 1.9, 0.28, 1.16, 9.7, 0.66, 0.22 µg/g for Co, Cu, Mo, Zn, As, Ba, Cd, Cr, Sb, Ti, V and W, respectively, and 52.5 and 27.2 ng/g for Sb and U, respectively. In single metal analysis, higher As, Cr and W concentrations were associated with increasing ACR annual change. Higher Zn, As and Cr concentrations were associated with decreasing eGFR annual change. The shape of the longitudinal dose-responses, however, was compatible with a nephrotoxic role for all metals, both in ACR and eGFR models. In joint metal analysis, both higher mixtures of Cu-Zn-As-Ba-Ti-U-V-W and Co-Cd-Cr-Sb-V-W showed associations with increasing ACR and decreasing eGFR annual change. As and Cr were main drivers of the ACR change joint metal association. For the eGFR change joint metal association, while Zn and Cr were main drivers, other metals also contributed substantially. We identified potential interactions for As, Zn and W by other metals with ACR change, but not with eGFR change. Our findings support that Zn, As, Cr and W and suggestively other metals, are nephrotoxic at relatively low exposure levels. Metal exposure reduction and mitigation interventions may improve prevention and decrease the burden of renal disease in the population.


Subject(s)
Cadmium , Uranium , Middle Aged , Adult , Humans , Albuminuria , Spain/epidemiology , Chromium , Zinc , Cobalt , Molybdenum , Titanium , Barium
4.
Free Radic Biol Med ; 194: 52-61, 2023 01.
Article in English | MEDLINE | ID: mdl-36370960

ABSTRACT

BACKGROUND: The potential joint influence of metabolites on bone fragility has been rarely evaluated. We assessed the association of plasma metabolic patterns with bone fragility endpoints (primarily, incident osteoporosis-related bone fractures, and, secondarily, bone mineral density BMD) in the Hortega Study participants. Redox balance plays a key role in bone metabolism. We also assessed differential associations in participant subgroups by redox-related metal exposure levels and candidate genetic variants. MATERIAL AND METHODS: In 467 participants older than 50 years from the Hortega Study, a representative sample from a region in Spain, we estimated metabolic principal components (mPC) for 54 plasma metabolites from NMR-spectrometry. Metals biomarkers were measured in plasma by AAS and in urine by HPLC-ICPMS. Redox-related SNPs (N = 341) were measured by oligo-ligation assay. RESULTS: The prospective association with incident bone fractures was inverse for mPC1 (non-essential and essential amino acids, including branched-chain, and bacterial co-metabolites, including isobutyrate, trimethylamines and phenylpropionate, versus fatty acids and VLDL) and mPC4 (HDL), but positive for mPC2 (essential amino acids, including aromatic, and bacterial co-metabolites, including isopropanol and methanol). Findings from BMD models were consistent. Participants with decreased selenium and increased antimony, arsenic and, suggestively, cadmium exposures showed higher mPC2-associated bone fractures risk. Genetic variants annotated to 19 genes, with the strongest evidence for NCF4, NOX4 and XDH, showed differential metabolic-related bone fractures risk. CONCLUSIONS: Metabolic patterns reflecting amino acids, microbiota co-metabolism and lipid metabolism were associated with bone fragility endpoints. Carriers of redox-related variants may benefit from metabolic interventions to prevent the consequences of bone fragility depending on their antimony, arsenic, selenium, and, possibly, cadmium, exposure levels.


Subject(s)
Arsenic , Fractures, Bone , Selenium , Humans , Cadmium , Antimony , Bone Density/genetics , Oxidation-Reduction
5.
Diabetes Care ; 45(11): 2561-2569, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36134919

ABSTRACT

OBJECTIVE: Hyperglycemia can increase urinary zinc excretion. We evaluated the association of higher urinary zinc level with new diagnosis of incident type 2 diabetes mellitus (T2DM) in adult populations with a high burden of T2DM from AZ, OK, and ND and SD. We also assessed the cross-sectional association of urinary zinc levels with prevalent prediabetes. RESEARCH DESIGN AND METHODS: We included 1,339 adults free of T2DM at baseline (1989-1991) followed through 1998-1999 in the Strong Heart Study (SHS) and 1,905 family members of SHS participants followed as part of the Strong Heart Family Study (SHFS) through 2006-2009. RESULTS: T2DM incidence was 14.7% (mean follow-up 6.6 years) in the SHS and 13.5% (mean follow-up 5.6 years) in the SHFS. After adjustment for sex, site, education, smoking status, BMI, and estimated glomerular filtration rate, the hazard ratio of T2DM in comparing 75th vs. 25th percentiles of urinary zinc distribution was 1.21 (95% CI 1.08, 1.36) in the SHS and 1.12 (0.96, 1.31) in the SHFS. These associations were attenuated but significant in the SHS after adjustment for HOMA of insulin resistance (HOMA-IR) score. With exclusion of participants with prediabetes at baseline, urinary zinc remained significantly associated with T2DM in the SHS. In cross-sectional analyses, prediabetes was associated with higher urinary zinc levels. CONCLUSIONS: Urinary zinc levels were associated with T2DM incidence and prediabetes prevalence even after adjustment for HOMA-IR in populations with a high burden of T2DM. These results highlight the importance of zinc metabolism in diabetes development.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Prediabetic State , Adult , Humans , Diabetes Mellitus, Type 2/epidemiology , Prediabetic State/epidemiology , Blood Glucose/metabolism , Prospective Studies , Cross-Sectional Studies , Zinc
6.
Redox Biol ; 52: 102314, 2022 06.
Article in English | MEDLINE | ID: mdl-35460952

ABSTRACT

BACKGROUND: Limited studies have evaluated the joint influence of redox-related metals and genetic variation on metabolic pathways. We analyzed the association of 11 metals with metabolic patterns, and the interacting role of candidate genetic variants, in 1145 participants from the Hortega Study, a population-based sample from Spain. METHODS: Urine antimony (Sb), arsenic, barium (Ba), cadmium (Cd), chromium (Cr), cobalt (Co), molybdenum (Mo) and vanadium (V), and plasma copper (Cu), selenium (Se) and zinc (Zn) were measured by ICP-MS and AAS, respectively. We summarized 54 plasma metabolites, measured with targeted NMR, by estimating metabolic principal components (mPC). Redox-related SNPs (N = 291) were measured by oligo-ligation assay. RESULTS: In our study, the association with metabolic principal component (mPC) 1 (reflecting non-essential and essential amino acids, including branched chain, and bacterial co-metabolism versus fatty acids and VLDL subclasses) was positive for Se and Zn, but inverse for Cu, arsenobetaine-corrected arsenic (As) and Sb. The association with mPC2 (reflecting essential amino acids, including aromatic, and bacterial co-metabolism) was inverse for Se, Zn and Cd. The association with mPC3 (reflecting LDL subclasses) was positive for Cu, Se and Zn, but inverse for Co. The association for mPC4 (reflecting HDL subclasses) was positive for Sb, but inverse for plasma Zn. These associations were mainly driven by Cu and Sb for mPC1; Se, Zn and Cd for mPC2; Co, Se and Zn for mPC3; and Zn for mPC4. The most SNP-metal interacting genes were NOX1, GSR, GCLC, AGT and REN. Co and Zn showed the highest number of interactions with genetic variants associated to enriched endocrine, cardiovascular and neurological pathways. CONCLUSIONS: Exposures to Co, Cu, Se, Zn, As, Cd and Sb were associated with several metabolic patterns involved in chronic disease. Carriers of redox-related variants may have differential susceptibility to metabolic alterations associated to excessive exposure to metals.


Subject(s)
Arsenic , Metals, Heavy , Selenium , Amino Acids, Essential , Arsenic/urine , Cadmium , Gene-Environment Interaction , Humans , Metals , Metals, Heavy/urine , Oxidation-Reduction , Spain
7.
Hypertension ; 79(6): 1237-1246, 2022 06.
Article in English | MEDLINE | ID: mdl-35345885

ABSTRACT

BACKGROUND: Information on the relationship between ambulatory blood pressure (ABP) and concurrently office blood pressure (BP) values in youth still suffers from limitations. We provide information on the differences between office BP and ABP, the factors related, and the clinical implications. METHODS: Three thousand six hundred ninety matched measurements of office BP and ABP on the same day, from 2390 children, aged 5 to 15 years, of both sexes were eligible. Office BP was measured using an oscillometric device (Omron 705 IT) and 24-hour ABP using oscillometric SpaceLabs 90207. Average of office, 24-hour, daytime, nighttime, systolic, and diastolic BP and heart rate was calculated. BP categories according to the European guidelines and phenotype of mismatch office BP versus ABP were defined. RESULTS: Both daytime systolic and diastolic BP were higher than office BP with a progressive reduction of the differences from 5 to 15 years. The office minus daytime BP differences were the largest in normotensive subjects, less at high-normal, and reversed in hypertensive ones, independently of age and weight status. White coat and masked hypertension covered no more than 13.6% at all ages. CONCLUSIONS: In youth, it is inaccurate to obtain reference values for ABP by extrapolating from office BP values. The differences between office BP and ABP are minimal in children with office BP values in the range of hypertension, reinforcing the recommendation to use ABP measurement at the time to confirm hypertension.


Subject(s)
Hypertension , Masked Hypertension , Adolescent , Blood Pressure/physiology , Blood Pressure Determination , Blood Pressure Monitoring, Ambulatory , Female , Humans , Hypertension/diagnosis , Male
8.
Environ Res ; 210: 112959, 2022 07.
Article in English | MEDLINE | ID: mdl-35189102

ABSTRACT

BACKGROUND: Cadmium is a ubiquitous and persistent metal, associated with different harmful health effects and with increased morbidity and mortality. Understanding the main sources of exposure is essential to identify at risk populations and to design public health interventions. OBJECTIVE: To evaluate cadmium exposure in a random-sample of general adult population from three regions of Spain, assessed by the urinary cadmium (U-Cd) concentration, and to identify its potential determinants and sex-specific differences, including sociodemographic, lifestyle and dietary factors. MATERIALS AND METHODS: We measured U-Cd (µg/g creatinine) in single urine spot samples from 1282 controls enrolled in the multicase-control study in common tumors in Spain (MCC-Spain) with inductively coupling plasma-mass spectrometry equipped with an octopole reaction systems (ICP-ORS-MS). The association between sociodemographic, lifestyle, and dietary characteristics and U-Cd concentrations was evaluated using geometric mean ratios (GMR) estimated by multiple log-linear regression models. RESULTS: Overall, geometric mean U-Cd concentration was 0.40 (95%CI: 0.38, 0.41) µg/g creatinine. Levels were higher in women than in men (GMR]: 1.19; 95%CI: 1.07, 1.32), and increased with age in males (ptrend< 0.001). Cigarette smoking was clearly associated to U-Cd levels (GMRformer vs non-smokers: 1.16; 95%CI: 1.05, 1.29; GMRcurrent vs non-smokers: 1.42; 95%CI: 1.26, 1.60); the relationship with secondhand tobacco exposure in non-smokers, was restricted to women (pinteraction = 0.02). Sampling season and region also seemed to influence U-Cd concentrations, with lower levels in summer (GMRsummer vs average: 0.79; 95%CI: 0.71, 0.88), and higher levels in North-Spain Asturias (GMRAsturias vs average: 1.13; 95%CI: 1.04, 1.23). Regarding diet, higher U-Cd concentration was associated with eggs consumption only in men (pinteraction = 0.04), just as rice intake was associated in women (pinteraction = 0.03). CONCLUSION: These results confirmed that tobacco exposure is the main modifiable predictor of U-Cd concentrations, and remark that the role of dietary/sociodemographic factors on U-Cd levels may differ by sex.


Subject(s)
Cadmium , Environmental Exposure , Adult , Cadmium/urine , Creatinine/urine , Diet , Environmental Exposure/analysis , Female , Humans , Male , Spain
9.
Int J Behav Nutr Phys Act ; 19(1): 8, 2022 01 27.
Article in English | MEDLINE | ID: mdl-35086546

ABSTRACT

BACKGROUND: The contribution of metabolomic factors to the association of healthy lifestyle with type 2 diabetes risk is unknown. We assessed the association of a composite measure of lifestyle with plasma metabolite profiles and incident type 2 diabetes, and whether relevant metabolites can explain the prospective association between healthy lifestyle and incident type 2 diabetes. METHODS: A Healthy Lifestyle Score (HLS) (5-point scale including diet, physical activity, smoking status, alcohol consumption and BMI) was estimated in 1016 Hortega Study participants, who had targeted plasma metabolomic determinations at baseline examination in 2001-2003, and were followed-up to 2015 to ascertain incident type 2 diabetes. RESULTS: The HLS was cross-sectionally associated with 32 (out of 49) plasma metabolites (2.5% false discovery rate). In the subset of 830 participants without prevalent type 2 diabetes, the rate ratio (RR) and rate difference (RD) of incident type 2 diabetes (n cases = 51) per one-point increase in HLS was, respectively, 0.69 (95% CI, 0.51, 0.93), and - 8.23 (95% CI, - 16.34, - 0.13)/10,000 person-years. In single-metabolite models, most of the HLS-related metabolites were prospectively associated with incident type 2 diabetes. In probit Bayesian Kernel Machine Regression, these prospective associations were mostly driven by medium HDL particle concentration and phenylpropionate, followed by small LDL particle concentration, which jointly accounted for ~ 50% of the HLS-related decrease in incident type 2 diabetes. CONCLUSIONS: The HLS showed a strong inverse association with incident type 2 diabetes, which was largely explained by plasma metabolites measured years before the clinical diagnosis.


Subject(s)
Diabetes Mellitus, Type 2 , Bayes Theorem , Diabetes Mellitus, Type 2/epidemiology , Healthy Lifestyle , Humans , Metabolomics , Risk Factors , Spain/epidemiology
10.
Environ Res ; 207: 112194, 2022 05 01.
Article in English | MEDLINE | ID: mdl-34653410

ABSTRACT

BACKGROUND: American Indians have a higher burden of chronic lung disease compared to the US average. Several metals are known to induce chronic lung disease at high exposure levels; however, less is known about the role of environmental-level metal exposure. We investigated respiratory effects of exposure to single metals and metal-mixtures in American Indians who participated in the Strong Heart Study. METHODS: We included 2077 participants with data on 6 metals (As, Cd, Mo, Se, W, Zn) measured from baseline urine samples (1989-1991) and who underwent spirometry testing at follow-up (1993-1995). We used generalized linear regression to assess associations of single metals with spirometry-defined measures of airflow limitation and restrictive ventilatory pattern, and continuous spirometry. We used Bayesian Kernel Machine Regression to investigate the joint effects of the metal-mixture. Sensitivity analyses included stratifying by smoking status and diabetes. RESULTS: Participants were 40% male, with median age 55 years. 21% had spirometry-defined airflow limitation, and 14% had a restrictive ventilatory pattern. In individual metal analyses, Cd was associated with higher odds of airflow limitation and lower FEV1 and FEV1/FVC. Mo was associated with higher odds of restrictive ventilatory pattern and lower FVC. Metal-mixtures analyses confirmed these models. In smoking stratified analyses, the overall metal-mixture was linearly and positively associated with airflow limitation among non-smokers; Cd was the strongest contributor. For restrictive ventilatory pattern, the association with the overall metal-mixture was strong and linear among participants with diabetes and markedly attenuated among participants without diabetes. Among those with diabetes, Mo and Zn were the major contributors. CONCLUSIONS: Environmental-level exposure to several metals was associated with higher odds of spirometry-defined lung disease in an American Indian population. Exposure to multiple metals, including Cd and Mo, may have an under-recognized adverse role on the respiratory system.


Subject(s)
Environmental Exposure , Lung Diseases , Adult , Bayes Theorem , Environmental Exposure/analysis , Female , Forced Expiratory Volume , Humans , Lung Diseases/chemically induced , Lung Diseases/epidemiology , Male , Middle Aged , Spirometry , American Indian or Alaska Native
11.
Arterioscler Thromb Vasc Biol ; 42(1): 87-99, 2022 01.
Article in English | MEDLINE | ID: mdl-34879710

ABSTRACT

OBJECTIVE: Studies evaluating the association of metals with subclinical atherosclerosis are mostly limited to carotid arteries. We assessed individual and joint associations of nonessential metals exposure with subclinical atherosclerosis in 3 vascular territories. Approach and Results: One thousand eight hundred seventy-three Aragon Workers Health Study participants had urinary determinations of inorganic arsenic species, barium, cadmium, chromium, antimony, titanium, uranium, vanadium, and tungsten. Plaque presence in carotid and femoral arteries was determined by ultrasound. Coronary Agatston calcium score ≥1 was determined by computed tomography scan. Median arsenic, barium, cadmium, chromium, antimony, titanium, uranium, vanadium, and tungsten levels were 1.83, 1.98, 0.27, 1.18, 0.05, 9.8, 0.03, 0.66, and 0.23 µg/g creatinine, respectively. The adjusted odds ratio (95% CI) for subclinical atherosclerosis presence in at least one territory was 1.25 (1.03-1.51) for arsenic, 1.67 (1.22-2.29) for cadmium, and 1.26 (1.04-1.52) for titanium. These associations were driven by arsenic and cadmium in carotid, cadmium and titanium in femoral, and titanium in coronary territories and mostly remained after additional adjustment for the other relevant metals. Titanium, cadmium, and antimony also showed positive associations with alternative definitions of increased coronary calcium. Bayesian Kernel Machine Regression analysis simultaneously evaluating metal associations suggested an interaction between arsenic and the joint cadmium-titanium exposure. CONCLUSIONS: Our results support arsenic and cadmium and identify titanium and potentially antimony as atherosclerosis risk factors. Exposure reduction and mitigation interventions of these metals may decrease cardiovascular risk in individuals without clinical disease.


Subject(s)
Atherosclerosis/chemically induced , Carotid Artery Diseases/chemically induced , Coronary Artery Disease/chemically induced , Femoral Artery/drug effects , Metals/adverse effects , Occupational Exposure/adverse effects , Occupational Health , Adult , Antimony/adverse effects , Antimony/urine , Arsenic/adverse effects , Arsenic/urine , Asymptomatic Diseases , Atherosclerosis/diagnostic imaging , Atherosclerosis/epidemiology , Atherosclerosis/urine , Biomarkers/urine , Cadmium/adverse effects , Cadmium/urine , Carotid Artery Diseases/diagnostic imaging , Carotid Artery Diseases/epidemiology , Carotid Artery Diseases/urine , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/epidemiology , Coronary Artery Disease/urine , Cross-Sectional Studies , Female , Femoral Artery/diagnostic imaging , Humans , Male , Metals/urine , Middle Aged , Plaque, Atherosclerotic , Risk Assessment , Risk Factors , Spain/epidemiology , Titanium/adverse effects , Titanium/urine
12.
Environ Res ; 202: 111667, 2021 11.
Article in English | MEDLINE | ID: mdl-34256077

ABSTRACT

The use of electronic cigarettes (e-cigarettes) has increased due to the belief that they are healthier than tobacco cigarettes. E-cigarettes contain a metallic heating coil (composed of Ni, Cr, Al and other metals) to heat a solution (commonly called e-liquid) and convert it into an aerosol. This aerosol is inhaled (vaped) by the users who can be potentially exposed to a wide variety of metals. We investigated the possible transfer of metals from the coil to the e-liquid and the generated aerosol, and how the exposure to this aerosol can increase metal body burden in e-cigarette users. We recruited 75 e-cigarette users (50 who only vaped and 25 dual users who vaped and smoked) and 25 controls who neither vaped nor smoked. E-liquid samples before (dispenser e-liquid) and after (tank e-liquid) being added to their devices were collected. Aerosol samples were collected using a condensation method. All participants provided urine and hair samples. All samples were analyzed for metals by ICP-MS. We observed higher metal concentrations in the aerosol and tank e-liquid (in contact with the coil) compared to the dispenser e-liquid (before contact with the coil). The median concentrations for some of the metals with the most remarkable increases in aerosol and tank e-liquid vs. dispenser e-liquid were 36.90 and 62.73 vs. 18.29 µg/kg for Al; 6.71 and 28.97 vs. 0.98 µg/kg for Cr; 91.39 and 414.47 vs. 1.64 µg/kg for Ni; 738.99 and 744.24 vs. 16.56 µg/kg for Zn; and 10.17 and 22.31 vs. 0.88 µg/kg for Pb. We also found detectable and potentially high concentrations of other metals such as Mn, Cu, Sb and Sn. In urine, increases in the median levels (µg/g creatinine) in vapers/duals vs. controls were observed for some metals, including Cr (0.34/0.28 vs. 0.20), Cu (1.72/2.36 vs. 1.46), Sn (0.26/0.31 vs. 0.18) and Pb (0.39/0.44 vs. 0.22). In hair, there were no differences in metal concentrations among the three groups. In conclusion, e-cigarettes are likely a source of metals such as Cr, Cu, Ni, Pb or Sn. These metals come from the device, likely the heating resistance, as their concentrations were low in the dispenser e-liquid and higher in the aerosol and the e-liquid left in the tank. Although the exposure to e-cigarette aerosol can have an influence in the body burden of metals, aerosol metal levels were not clearly associated with metal levels in biological samples such as urine or hair in e-cigarette users in this study.


Subject(s)
Electronic Nicotine Delivery Systems , Biomarkers , Humans , Metals , Smokers , Spain
13.
Environ Pollut ; 276: 116717, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33640655

ABSTRACT

Genetic effects are suspected to influence cadmium internal dose. Our objective was to assess genetic determinants of urine cadmium in American Indian adults participating in the Strong Heart Family Study (SHFS). Urine cadmium levels and genotyped short tandem repeat (STR) markers were available on 1936 SHFS participants. We investigated heritability, including gene-by-sex and smoking interactions, and STR-based quantitative trait locus (QTL) linkage, using a variance-component decomposition approach, which incorporates the genetic information contained in the pedigrees. We also used available single nucleotide polymorphisms (SNPs) from Illumina's Metabochip and custom panel to assess whether promising QTLs associated regions could be attributed to SNPs annotated to specific genes. Median urine cadmium levels were 0.44 µg/g creatinine. The heritability of urine cadmium concentrations was 28%, with no evidence of gene-by-sex or -smoking interaction. We found strong statistical evidence for a genetic locus at chromosome 16 determining urine cadmium concentrations (Logarithm of odds score [LOD] = 3.8). Among the top 20 associated SNPs in this locus, 17 were annotated to ABCC1 (p-values from 0.0002 to 0.02), and attenuated the maximum linkage peak by a ∼40%. Suggestive QTL signals (LOD>1.9) in chromosomes 2, 6, 11, 14, and 19, showed associated SNPs in the genes NDUFA10, PDE10A, PLEKHA7, BAZ1A and CHAF1A, respectively. Our findings support that urinary cadmium levels are heritable and influenced by a QTL on chromosome 16, which was explained by genetic variation in ABCC1. Studies with extended sets of genome-wide markers are needed to confirm these findings and to identify additional metabolism and toxicity pathways for cadmium.


Subject(s)
Cadmium , Quantitative Trait Loci , Adult , Cadmium/urine , Chromosomal Proteins, Non-Histone , Genetic Linkage , Genotype , Humans , Multidrug Resistance-Associated Proteins/genetics , Phosphoric Diester Hydrolases , Polymorphism, Single Nucleotide
14.
Free Radic Biol Med ; 162: 392-400, 2021 01.
Article in English | MEDLINE | ID: mdl-33137469

ABSTRACT

BACKGROUND AND OBJECTIVES: Experimental data suggest that trace elements, such as arsenic (As), cadmium (Cd), and selenium (Se) can influence the bone remodeling process. We evaluated the cross-sectional association between As, Cd, and Se biomarkers with bone mineral density (BMD) measured at the calcaneus, in a representative sample of a general population from Spain. As secondary analyses we evaluated the associations of interest in subgroups defined by well-established BMD determinants, and also conducted prospective analysis of osteoporosis-related incident bone fractures restricted to participants older than 50 years-old. METHODS: In N = 1365 Hortega Study participants >20 years-old, urine As and Cd were measured by inductively coupled-plasma mass spectrometry (ICPMS); plasma Se was measured by atomic absorption spectrometry (AAS) with graphite furnace; and BMD at the calcaneus was measured using the Peripheral Instaneuous X-ray Imaging system (PIXI). As levels were corrected for arsenobetaine (Asb) to account for inorganic As exposure. RESULTS: The median of total urine As, Asb-corrected urine As, urine Cd, and plasma Se was 61.3, 6.53 and 0.39 µg/g creatinine, and 84.9 µg/L, respectively. In cross-sectional analysis, urine As and Cd were not associated with reduced BMD (T-score < -1 SD). We observed a non-linear dose-response of Se and reduced BMD, showing an inverse association below ~105 µg/L, which became increasingly positive above ~105 µg/L. The evaluated subgroups did not show differential associations. In prospective analysis, while we also observed a U-shape dose-response of Se with the incidence of osteoporosis-related bone fractures, the positive association above ~105 µg/L was markedly stronger, compared to the cross-sectional analysis. CONCLUSIONS: Our results support that Se, but not As and Cd, was associated to BMD-related disease. The association of Se and BMD-related disease was non-linear, including a strong positive association with osteoporosis-related bone fractures risk at the higher Se exposure range. Considering the substantial burden of bone loss in elderly populations, additional large prospective studies are needed to confirm the relevance of our findings to bone loss prevention in the population depending on Se exposure levels.


Subject(s)
Arsenic , Selenium , Adult , Aged , Arsenic/toxicity , Bone Density , Cadmium/toxicity , Cross-Sectional Studies , Humans , Middle Aged , Prospective Studies , Young Adult
15.
Article in English | MEDLINE | ID: mdl-32230710

ABSTRACT

BACKGROUND: Hispanics/Latinos represent >15% of the United States (US) population and experience a high burden of cardiovascular disease (CVD) and diabetes. Dietary exposure, particularly to arsenic (As), may be associated with CVD and diabetes in Hispanics/Latinos. Rural populations in the US exposed to As in drinking water have increased risk of diabetes and CVD; however, little is known about the risk among urban populations with low As in water who are mostly exposed to As through food. METHODS: To explore the levels of inorganic arsenic exposure (the sum of inorganic and methylated arsenic species in urine, ∑As, corrected by a residual-based method) in persons of Hispanic/Latino origin, we conducted a pilot study quantifying urinary arsenic levels among 45 participants in the Study of Latinos: Nutrition & Physical Activity Assessment Study (SOLNAS). RESULTS: The median (interquartile range) of the urinary arsenic species (µg/L) were as follows: inorganic As 0.6 (0.4, 1.0), monomethylarsonic acid 1.2 (0.7, 1.9), dimethylarsinic acid 7.2 (4.3, 15.3), and ∑As 6.0 (4.3, 10.5). CONCLUSIONS: This study adds to the existing evidence that harmful forms of arsenic are present in this group of Hispanics/Latinos.


Subject(s)
Arsenic , Environmental Exposure , Hispanic or Latino , Medically Underserved Area , Urban Population , Adult , Arsenic/urine , Female , Humans , Male , Middle Aged , Pilot Projects , United States
16.
Environ Health ; 19(1): 24, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32101143

ABSTRACT

The original version of this article [1], published on 28 November 2019, contained incorrect title. In this Correction the affected part of the article is shown.

17.
Environ Int ; 137: 105531, 2020 04.
Article in English | MEDLINE | ID: mdl-32059145

ABSTRACT

Experimental and prospective epidemiologic evidence suggest that arsenic exposure has diabetogenic effects. However, little is known about how family exposure to arsenic may affect risk for type 2 diabetes (T2D)-related outcomes in adulthood. We evaluated the association of both maternal and offspring arsenic exposure with fasting glucose and incident T2D in 466 participants of the Strong Heart Family Study. Total arsenic (ΣAs) exposure was calculated as the sum of inorganic arsenic (iAs) and methylated (MMA, DMA) arsenic species in maternal and offspring baseline urine. Median maternal ΣAs at baseline (1989-91) was 7.6 µg/g creatinine, while median offspring ΣAs at baseline (2001-03) was 4.5 µg/g creatinine. Median offspring glucose in 2006-2009 was 94 mg/dL, and 79 participants developed T2D. The fully adjusted mean difference (95% CI) for offspring glucose was 4.40 (-3.46, 12.26) mg/dL per IQR increase in maternal ΣAs vs. 2.72 (-4.91 to 10.34) mg/dL per IQR increase in offspring ΣAs. The fully adjusted odds ratio (95%CI) of incident T2D was 1.35 (1.07, 1.69) for an IQR increase in maternal ΣAs and 1.15 (0.92, 1.43) for offspring ΣAs. The association of maternal ΣAs with T2D outcomes were attenuated with adjustment for offspring adiposity markers. Familial exposure to arsenic, as measured in mothers 15-20 years before offspring follow-up, is associated with increased odds of offspring T2D. More research is needed to confirm findings and better understand the importance of family exposure to arsenic in adult-onset diabetes.


Subject(s)
Arsenic , Blood Glucose , Diabetes Mellitus, Type 2 , Environmental Exposure , Insulin Resistance , Adult , Arsenic/toxicity , Blood Glucose/metabolism , Fasting , Female , Humans , Maternal Exposure , Prospective Studies
19.
Environ Health ; 18(1): 104, 2019 11 28.
Article in English | MEDLINE | ID: mdl-31779614

ABSTRACT

BACKGROUND: Arsenic exposure through drinking water is an established lung carcinogen. Evidence on non-malignant lung outcomes is less conclusive and suggests arsenic is associated with lower lung function. Studies examining low-moderate arsenic (< 50 µg/L), the level relevant for most populations, are limited. We evaluated the association of arsenic exposure with respiratory health in American Indians from the Northern Plains, the Southern Plains and the Southwest United States, communities with environmental exposure to inorganic arsenic through drinking water. METHODS: The Strong Heart Study is a prospective study of American Indian adults. This analysis used urinary arsenic measurements at baseline (1989-1991) and spirometry at Visit 2 (1993-1995) from 2132 participants to evaluate associations of arsenic exposure with airflow obstruction, restrictive pattern, self-reported respiratory disease, and symptoms. RESULTS: Airflow obstruction was present in 21.5% and restrictive pattern was present in 14.4%. The odds ratio (95% confidence interval) for obstruction and restrictive patterns, based on the fixed ratio definition, comparing the 75th to 25th percentile of arsenic, was 1.17 (0.99, 1.38) and 1.27 (1.01, 1.60), respectively, after adjustments, and 1.28 (1.02, 1.60) and 1.33 (0.90, 1.50), respectively, based on the lower limit of normal definition. Arsenic was associated with lower percent predicted FEV1 and FVC, self-reported emphysema and stopping for breath. CONCLUSION: Low-moderate arsenic exposure was positively associated with restrictive pattern, airflow obstruction, lower lung function, self-reported emphysema and stopping for breath, independent of smoking and other lung disease risk factors. Findings suggest that low-moderate arsenic exposure may contribute to restrictive lung disease.


Subject(s)
Arsenic/adverse effects , Drinking Water/analysis , Indians, North American/statistics & numerical data , Respiration Disorders/epidemiology , Water Pollutants, Chemical/adverse effects , Aged , Arsenicals/adverse effects , Environmental Exposure/adverse effects , Female , Humans , Male , Middle Aged , Prospective Studies , Respiration Disorders/chemically induced , Risk Factors , United States/epidemiology
20.
Environ Res ; 177: 108616, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31442790

ABSTRACT

BACKGROUND: Chronic exposure to inorganic arsenic (iAs) in the US occurs mainly through drinking water and diet. Although American Indian (AI) populations have elevated urinary arsenic concentrations compared to the general US population, dietary sources of arsenic exposure in AI populations are not well characterized. METHODS: We evaluated food frequency questionnaires to determine the major dietary sources of urinary arsenic concentrations (measured as the sum of arsenite, arsenate, monomethylarsonate, and dimethylarsinate, ΣAs) for 1727 AI participants in the Strong Heart Family Study (SHFS). We compared geometric mean ratios (GMRs) of urinary ΣAs for an interquartile range (IQR) increase in reported food group consumption. Exploratory analyses were stratified by gender and study center. RESULTS: In fully adjusted generalized estimating equation models, the percent increase (95% confidence interval) of urinary ΣAs per increase in reported food consumption corresponding to the IQR was 13% (5%, 21%) for organ meat, 8% (4%, 13%) for rice, 7% (2%, 13%) for processed meat, and 4% (1%, 7%) for non-alcoholic drinks. In analyses stratified by study center, the association with organ meat was only observed in North/South Dakota. Consumption of red meat [percent increase -7% (-11%, -3%)] and fries and chips [-6% (-10%, -2%)] was inversely associated with urinary ΣAs. CONCLUSIONS: Organ meat, processed meat, rice, and non-alcoholic drinks contribute to ΣAs exposure in the SHFS population. Organ meat is a unique source of ΣAs exposure for North and South Dakota participants and may reflect local food consumption. Further studies should comprehensively evaluate drinking water arsenic in SHFS communities and determine the relative contribution of diet and drinking water to total arsenic exposure.


Subject(s)
Arsenic/analysis , Arsenicals/analysis , Diet , Dietary Exposure/analysis , Adult , Cacodylic Acid , Female , Humans , Male , Middle Aged , Surveys and Questionnaires , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...