Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Reg Stud Mar Sci ; 62: 1-14, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37854150

ABSTRACT

This study examined geographical and seasonal patterns in carbonate chemistry and will facilitate assessment of acidification conditions and the current state of the seawater carbonate chemistry system in Narragansett Bay. Direct measurements of total alkalinity, dissolved inorganic carbon, dissolved oxygen percent saturation, water temperature, salinity and pressure were performed during monthly sampling cruises carried out over three years. These measurements were used to calculate the following biologically relevant carbonate system parameters: total pH (pHT), the partial pressure of carbon dioxide in the gas phase pCO2, and the aragonite saturation state ΩA. The information provided by carbonate chemistry analysis allowed for the characterization of acidification events which have the potential to disrupt the species composition and ecological functioning of coastal biological communities and threaten commercially important aquatic life. We found very robust relationships between salinity and total alkalinity Radjusted2=0.82 and between salinity and dissolved inorganic carbon Radjusted2=0.81 that persisted through all regions, seasons, and depth-layers with mixing of coastal waters with freshwater entering in the upper bay being an important driver on alkalinity and dissolved inorganic carbon distributions. We compared the metabolically linked calculated carbonate system parameters with dissolved oxygen (DO) saturation and found high correlation, with DO percent saturation exhibiting robust correlation with the calculated carbonate system parameters total pH (r=0.70) and with partial pressure of carbon dioxide in the gas phase (r=-0.71). Using a statistical model to correct for the confounded effects of time and space that are a common challenge in marine survey design, we found that acidification events occurred in the Northern Region of the bay, primarily during the Summer and Fall, and likely due to a combination of microbial respiration and stratification. These acidification events, especially in the Northern Region, have the potential to adversely impact aquatic life.

2.
Environ Res Lett ; 16: 1-14, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-35069797

ABSTRACT

Comprehensive sampling of the carbonate system in estuaries and coastal waters can be difficult and expensive because of the complex and heterogeneous nature of near-shore environments. We show that sample collection by community science programs is a viable strategy for expanding estuarine carbonate system monitoring and prioritizing regions for more targeted assessment. 'Shell Day' was a single-day regional water monitoring event coordinating coastal carbonate chemistry observations by 59 community science programs and seven research institutions in the northeastern United States, in which 410 total alkalinity (TA) samples from 86 stations were collected. Field replicates collected at both low and high tides had a mean standard deviation between replicates of 3.6 ± 0.3 µmol kg-1 (σ mean ± SE, n = 145) or 0.20 ± 0.02%. This level of precision demonstrates that with adequate protocols for sample collection, handling, storage, and analysis, community science programs are able to collect TA samples leading to high-quality analyses and data. Despite correlations between salinity, temperature, and TA observed at multiple spatial scales, empirical predictions of TA had relatively high root mean square error >48 µmol kg-1. Additionally, ten stations displayed tidal variability in TA that was not likely driven by low TA freshwater inputs. As such, TA cannot be predicted accurately from salinity using a single relationship across the northeastern US region, though predictions may be viable at more localized scales where consistent freshwater and seawater endmembers can be defined. There was a high degree of geographic heterogeneity in both mean and tidal variability in TA, and this single-day snapshot sampling identified three patterns driving variation in TA, with certain locations exhibiting increased risk of acidification. The success of Shell Day implies that similar community science based events could be conducted in other regions to not only expand understanding of the coastal carbonate system, but also provide a way to inventory monitoring assets, build partnerships with stakeholders, and expand education and outreach to a broader constituency.

3.
Mar Ecol Prog Ser ; 633: 89-104, 2020 Jan 09.
Article in English | MEDLINE | ID: mdl-34121786

ABSTRACT

Experimental exposure of early life stage bivalves has documented negative effects of elevated pCO2 on survival and growth, but the population consequences of these effects are unknown. Following standard practices from population viability analysis and wildlife risk assessment, we substituted laboratory-derived stress-response relationships into baseline population models of Mercenaria mercenaria and Argopecten irradians. The models were constructed using inverse demographic analyses with time series of size-structured field data in NY, USA, whereas the stress-response relationships were developed using data from a series of previously published laboratory studies. We used stochastic projection methods and diffusion approximations of extinction probability to estimate cumulative risk of 50% population decline during ten-year population projections at 1, 1.5 and 2 times ambient pCO2 levels. Although the A. irradians population exhibited higher growth in the field data (12% per year) than the declining M. mercenaria population (-8% per year), cumulative risk was high for A. irradians in the first ten years due to high variance in the stochastic growth rate estimate (log λs = -0.02, σ2 = 0.24). This ten-year cumulative risk increased from 69% to 94% and >99% at 1.5 and 2 times ambient scenarios. For M. mercenaria (log λs = -0.09, σ2 = 0.01), ten-year risk was 81%, 96% and >99% at 1, 1.5 and 2 times ambient pCO2, respectively. These estimates of risk could be improved with detailed consideration of harvest effects, disease, restocking, compensatory responses, other ecological complexities, and the nature of interactions between these and other effects that are beyond the scope of available data. However, results clearly indicate that early life stage responses to plausible levels of pCO2 enrichment have the potential to cause significant increases in risk to these marine bivalve populations.

SELECTION OF CITATIONS
SEARCH DETAIL