Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 438(7071): 1151-6, 2005 Dec 22.
Article in English | MEDLINE | ID: mdl-16372009

ABSTRACT

Aspergillus fumigatus is exceptional among microorganisms in being both a primary and opportunistic pathogen as well as a major allergen. Its conidia production is prolific, and so human respiratory tract exposure is almost constant. A. fumigatus is isolated from human habitats and vegetable compost heaps. In immunocompromised individuals, the incidence of invasive infection can be as high as 50% and the mortality rate is often about 50% (ref. 2). The interaction of A. fumigatus and other airborne fungi with the immune system is increasingly linked to severe asthma and sinusitis. Although the burden of invasive disease caused by A. fumigatus is substantial, the basic biology of the organism is mostly obscure. Here we show the complete 29.4-megabase genome sequence of the clinical isolate Af293, which consists of eight chromosomes containing 9,926 predicted genes. Microarray analysis revealed temperature-dependent expression of distinct sets of genes, as well as 700 A. fumigatus genes not present or significantly diverged in the closely related sexual species Neosartorya fischeri, many of which may have roles in the pathogenicity phenotype. The Af293 genome sequence provides an unparalleled resource for the future understanding of this remarkable fungus.


Subject(s)
Allergens/genetics , Aspergillus fumigatus/genetics , Aspergillus fumigatus/pathogenicity , Genome, Fungal , Genomics , Hypersensitivity/microbiology , Aspergillus fumigatus/immunology , Gene Expression Profiling , Gene Expression Regulation, Fungal , Genes, Fungal/genetics , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis , Sequence Analysis, DNA , Temperature , Virulence/genetics
2.
Brief Bioinform ; 3(3): 225-35, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12230031

ABSTRACT

The exponential increase in the submission of nucleotide sequences to the nucleotide sequence database by genome sequencing centres has resulted in a need for rapid, automatic methods for classification of the resulting protein sequences. There are several signature and sequence cluster-based methods for protein classification, each resource having distinct areas of optimum application owing to the differences in the underlying analysis methods. In recognition of this, InterPro was developed as an integrated documentation resource for protein families, domains and functional sites, to rationalise the complementary efforts of the individual protein signature database projects. The member databases - PRINTS, PROSITE, Pfam, ProDom, SMART and TIGRFAMs - form the InterPro core. Related signatures from each member database are unified into single InterPro entries. Each InterPro entry includes a unique accession number, functional descriptions and literature references, and links are made back to the relevant member database(s). Release 4.0 of InterPro (November 2001) contains 4,691 entries, representing 3,532 families, 1,068 domains, 74 repeats and 15 sites of post-translational modification (PTMs) encoded by different regular expressions, profiles, fingerprints and hidden Markov models (HMMs). Each InterPro entry lists all the matches against SWISS-PROT and TrEMBL (2,141,621 InterPro hits from 586,124 SWISS-PROT and TrEMBL protein sequences). The database is freely accessible for text- and sequence-based searches.


Subject(s)
Computational Biology , Databases, Protein , Proteins , Algorithms , Humans , Information Services , Internet , Proteins/chemistry , Proteins/classification , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...