Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr A Found Adv ; 76(Pt 2): 121-131, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32124850

ABSTRACT

A crystallographic indexing algorithm, pinkIndexer, is presented for the analysis of snapshot diffraction patterns. It can be used in a variety of contexts including measurements made with a monochromatic radiation source, a polychromatic source or with radiation of very short wavelength. As such, the algorithm is particularly suited to automated data processing for two emerging measurement techniques for macromolecular structure determination: serial pink-beam X-ray crystallography and serial electron crystallography, which until now lacked reliable programs for analyzing many individual diffraction patterns from crystals of uncorrelated orientation. The algorithm requires approximate knowledge of the unit-cell parameters of the crystal, but not the wavelengths associated with each Bragg spot. The use of pinkIndexer is demonstrated by obtaining 1005 lattices from a published pink-beam serial crystallography data set that had previously yielded 140 indexed lattices. Additionally, in tests on experimental serial crystallography diffraction data recorded with quasi-monochromatic X-rays and with electrons the algorithm indexed more patterns than other programs tested.

2.
Acta Crystallogr A Found Adv ; 75(Pt 5): 694-704, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31475914

ABSTRACT

Serial crystallography records still diffraction patterns from single, randomly oriented crystals, then merges data from hundreds or thousands of them to form a complete data set. To process the data, the diffraction patterns must first be indexed, equivalent to determining the orientation of each crystal. A novel automatic indexing algorithm is presented, which in tests usually gives significantly higher indexing rates than alternative programs currently available for this task. The algorithm does not require prior knowledge of the lattice parameters but can make use of that information if provided, and also allows indexing of diffraction patterns generated by several crystals in the beam. Cases with a small number of Bragg spots per pattern appear to particularly benefit from the new approach. The algorithm has been implemented and optimized for fast execution, making it suitable for real-time feedback during serial crystallography experiments. It is implemented in an open-source C++ library and distributed under the LGPLv3 licence. An interface to it has been added to the CrystFEL software suite.

3.
Int J Biomed Imaging ; 2013: 593183, 2013.
Article in English | MEDLINE | ID: mdl-23983675

ABSTRACT

Segmentation of specular reflections is an essential step in endoscopic image analysis; it affects all further processing steps including segmentation, classification, and registration tasks. The dichromatic reflectance model, which is often used for specular reflection modeling, is made for dielectric materials and not for human tissue. Hence, most recent segmentation approaches rely on thresholding techniques. In this work, we first demonstrate the limited accuracy that can be achieved by thresholding techniques and propose a hybrid method which is based on closed contours and thresholding. The method has been evaluated on 269 specular reflections in 49 images which were taken from 27 real laparoscopic interventions. Our method improves the average sensitivity by 16% compared to the state-of-the-art thresholding methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...