Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 232: 123398, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-36702220

ABSTRACT

In plants, catalase (CAT) mainly scavenges H2O2 from reactive oxygen species (ROS) and regulates the growth and development. So far, genome-wide identification of CAT gene family in Saccharum has not yet been reported. Here, 16 SsCAT genes were identified based on a Saccharum spontaneum genome. They were clustered into three subfamilies, with closer genes sharing similar structures. Most SsCAT proteins contained three conserved amino acids, one active catalytic site, one heme-ligand signature, and three peroxisomal targeting signal 1 (PTS1) sequences. The cis-regulatory element prediction revealed that SsCAT genes were involved in growth and development, and in response to various hormones and stresses. RNA-Seq databases showed that SsCAT genes were differentially expressed in Saccharum tissues and under cold, drought, and Sporisorium scitamineum stresses. The ScCAT1 gene transcript (GenBank accession number KF664183) and relevant CAT activity were up-regulated under S. scitamineum stress. Overexpression of ScCAT1 gene in Nicotiana benthamiana could enhance its resistance to pathogen infection through scavenging of excessive toxic ROS and up-regulated expressions of genes related to hypersensitive response (HR), ROS and salicylic acid (SA) pathways. This study provides comprehensive information for the CAT gene family and sets up a basis for its function identification in sugarcane.


Subject(s)
Saccharum , Saccharum/genetics , Saccharum/metabolism , Reactive Oxygen Species/metabolism , Catalase/metabolism , Disease Resistance/genetics , Hydrogen Peroxide/metabolism , Gene Expression Regulation, Plant , Plant Proteins/chemistry
2.
Front Plant Sci ; 13: 1035266, 2022.
Article in English | MEDLINE | ID: mdl-36311133

ABSTRACT

Sugarcane smut caused by Sporisorium scitamineum is one of the most severe fungal diseases worldwide. In this study, a cross was made between a smut-resistant variety YT93-159 and a smut-susceptible variety ROC22, and 312 progenies were obtained. Two bulks of progenies were then constructed, one consisted of 27 highly smut resistant progenies and the other 24 smut susceptible progenies. Total RNAs of the progenies of each bulk, were pooled and subject to bulked segregant RNA-sequence analysis (BSR-Seq). A total of 164.44 Gb clean data containing 2,341,449 SNPs and 64,999 genes were obtained, 7,295 of which were differentially expressed genes (DEGs). These DEGs were mainly enriched in stress-related metabolic pathways, including carbon metabolism, phenylalanine metabolism, plant hormone signal transduction, glutathione metabolism, and plant-pathogen interactions. Besides, 45,946 high-quality, credible SNPs, a 1.27 Mb region at Saccharum spontaneum chromosome Chr5B (68,904,827 to 70,172,982), and 129 candidate genes were identified to be associated with smut resistance. Among them, twenty-four genes, either encoding key enzymes involved in signaling pathways or being transcription factors, were found to be very closely associated with stress resistance. RT-qPCR analysis demonstrated that they played a positive role in smut resistance. Finally, a potential molecular mechanism of sugarcane and S. scitamineum interaction is depicted that activations of MAPK cascade signaling, ROS signaling, Ca2+ signaling, and PAL metabolic pathway and initiation of the glyoxalase system jointly promote the resistance to S. scitamineum in sugarcane. This study provides potential SNP markers and candidate gene resources for smut resistance breeding in sugarcane.

3.
Int J Mol Sci ; 23(18)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36142681

ABSTRACT

Sugarcane smut is a major fungal disease caused by Sporisorium scitamineum, which seriously reduces the yield and quality of sugarcane. In this study, 36 transcriptome data were collected from two sugarcane genotypes, YT93-159 (resistant) and ROC22 (susceptible) upon S. scitamineum infection. Data analysis revealed 20,273 (12,659 up-regulated and 7614 down-regulated) and 11,897 (7806 up-regulated and 4091 down-regulated) differentially expressed genes (DEGs) in YT93-159 and ROC22, respectively. A co-expression network was then constructed by weighted gene co-expression network analysis (WGCNA), which identified 5010 DEGs in 15 co-expressed gene modules. Four of the 15 modules, namely, Skyblue, Salmon, Darkorange, and Grey60, were significantly associated with smut resistance. The GO and KEGG enrichment analyses indicated that the DEGs involving in these four modules could be enriched in stress-related metabolic pathways, such as MAPK and hormone signal transduction, plant-pathogen interaction, amino acid metabolism, glutathione metabolism, and flavonoid, and phenylpropanoid biosynthesis. In total, 38 hub genes, including six from the Skyblue module, four from the Salmon module, 12 from the Darkorange module, and 16 from the Grey60 module, were screened as candidate hub genes by calculating gene connectivity in the corresponding network. Only 30 hub genes were amplifiable with RT-qPCR, of which 27 were up-regulated upon S. scitamineum infection. The results were consistent with the trend of gene expression in RNA-Seq, suggesting their positive roles in smut resistance. Interestingly, the expression levels of AOX, Cyb5, and LAC were higher in ROC22 than in YT93-159, indicating these three genes may act as negative regulators in response to S. scitamineum infection. This study revealed the transcriptome dynamics in sugarcane challenged by S. scitamineum infection and provided gene targets for smut resistance breeding in sugarcane.


Subject(s)
Saccharum , Ustilaginales , Amino Acids/metabolism , Edible Grain/genetics , Flavonoids/metabolism , Gene Expression Regulation, Plant , Gene Regulatory Networks , Glutathione/metabolism , Hormones/metabolism , Plant Breeding , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Saccharum/metabolism , Ustilaginales/genetics
4.
Microorganisms ; 9(9)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34576879

ABSTRACT

Mosaic is one of the most important sugarcane diseases, caused by single or compound infection of Sugarcane mosaic virus (SCMV), Sorghum mosaic virus (SrMV), and/or Sugarcane streak mosaic virus (SCSMV). The compound infection of mosaic has become increasingly serious in the last few years. The disease directly affects the photosynthesis and growth of sugarcane, leading to a significant decrease in cane yield and sucrose content, and thus serious economic losses. This review covers four aspects of sugarcane mosaic disease management: first, the current situation of sugarcane mosaic disease and its epidemic characteristics; second, the pathogenicity and genetic diversity of the three viruses; third, the identification methods of mosaic and its pathogen species; and fourth, the prevention and control measures for sugarcane mosaic disease and potential future research focus. The review is expected to provide scientific literature and guidance for the effective prevention and control of mosaic through resistance breeding in sugarcane.

5.
PeerJ ; 6: e5873, 2018.
Article in English | MEDLINE | ID: mdl-30402355

ABSTRACT

Glyoxalase I belongs to the glyoxalase system that detoxifies methylglyoxal (MG), a cytotoxic by-product produced mainly from triose phosphates. The concentration of MG increases rapidly under stress conditions. In this study, a novel glyoxalase I gene, designated as SoGloI was identified from sugarcane. SoGloI had a size of 1,091 bp with one open reading frame (ORF) of 885 bp encoding a protein of 294 amino acids. SoGloI was predicted as a Ni2+-dependent GLOI protein with two typical glyoxalase domains at positions 28-149 and 159-283, respectively. SoGloI was cloned into an expression plasmid vector, and the Trx-His-S-tag SoGloI protein produced in Escherichia coli was about 51 kDa. The recombinant E. coli cells expressing SoGloI compared to the control grew faster and tolerated higher concentrations of NaCl, CuCl2, CdCl2, or ZnSO4. SoGloI ubiquitously expressed in various sugarcane tissues. The expression was up-regulated under the treatments of NaCl, CuCl2, CdCl2, ZnSO4 and abscisic acid (ABA), or under simulated biotic stress conditions upon exposure to salicylic acid (SA) and methyl jasmonate (MeJA). SoGloI activity steadily increased when sugarcane was subjected to NaCl, CuCl2, CdCl2, or ZnSO4 treatments. Sub-cellular observations indicated that the SoGloI protein was located in both cytosol and nucleus. These results suggest that the SoGloI gene may play an important role in sugarcane's response to various biotic and abiotic stresses.

6.
Biomed Res Int ; 2018: 2786458, 2018.
Article in English | MEDLINE | ID: mdl-29951532

ABSTRACT

The ratoon stunting disease (RSD), caused by the bacterium Leifsonia xyli subsp. xyli (Lxx), is one of the most economically devastating diseases impacting sugarcane. RSD causes significant yield losses and variety degradation. Diagnosis of RSD is challenging because it does not exhibit any discernible internal and external symptoms. Moreover, the Lxx bacteria are very small and difficult to isolate, cultivate, and detect. In this study, conventional polymerase chain reaction (PCR), real-time quantitative PCR (RT-qPCR), and Lxx-loop-mediated isothermal amplification (Lxx-LAMP) were utilized to specifically detect the presence of Lxx pathogens in the juice from Lxx-infected sugarcane stalks and an Lxx-pMD18-T recombinant plasmid. The results showed that Lxx was a highly specific causal pathogen for RSD. All three techniques provided great reproducibility, while Lxx-LAMP had the highest sensitivity. When the DNA extract from Lxx-infected sugarcane juice was used as a template, Lxx-LAMP was 10 and 100 times more sensitive than RT-qPCR and conventional PCR, respectively. When the Lxx-pMD18-T recombinant plasmid was used as a template, Lxx-LAMP was as sensitive as RT-qPCR but was 10 times more sensitive than conventional PCR. Based on the Lxx-LAMP detection system established, adding 0.4 µM loop primers (LF/LP) can accelerate the reaction and reduce the total time required. In addition, the optimal amount of Bst DNA polymerase for Lxx-LAMP reactions was determined to be 6.0 U. The results provide technical support for the detection of RSD Lxx pathogen that will help manage sugarcane RSD.


Subject(s)
Actinomycetales/isolation & purification , Plant Diseases , Saccharum , Actinomycetales/genetics , DNA Primers , Humans , Nucleic Acid Amplification Techniques , Reproducibility of Results , Sensitivity and Specificity
7.
Phytopathology ; 106(7): 737-44, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27003508

ABSTRACT

Symptoms of red stripe disease caused by Acidovorax avenae subsp. avenae in Louisiana between 1985 and 2010 were limited to the leaf stripe form, which caused no apparent yield loss. During 2010, the more severe top rot form was observed, and a study was initiated to investigate the distribution of red stripe in the field and determine its effects on cane and sugar yields. Soil properties data, red stripe incidence, and sugarcane yields were all highly variable and were not randomly distributed in the field. Combined harvest data showed a negative correlation between yield components and red stripe incidence, with the strongest relationship between sucrose per metric ton and disease incidence. Red stripe incidence was positively correlated with several soil properties, including phosphorus, potassium, zinc, and calcium. Red stripe incidence also was found to increase with increasing nitrogen rate, with the greatest effects in heavy soils. Results also indicated that using red-stripe-infected cane as a seed source can significantly decrease shoot emergence, stalk population, and subsequent cane and sugar yields. These combined data suggest that red stripe disease can exhibit a highly variable rate of infection in commercial sugarcane fields and may also significantly decrease sugar yields.


Subject(s)
Comamonadaceae/physiology , Host-Pathogen Interactions , Saccharum/microbiology , Soil/chemistry , Biomass , Louisiana , Plant Diseases , Saccharum/growth & development
8.
Mol Biotechnol ; 58(3): 188-96, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26837389

ABSTRACT

Puccinia kuehnii is a fungal pathogen that causes orange rust in sugarcane, which is now prevalent in many countries. At the early stage of disease, it is almost indistinguishable from brown rust, which is caused by Puccinia melanocephala. Although several PCR assays are available to detect these diseases, the loop-mediated isothermal amplification (LAMP)-based assay has been reported to be more economical and easier to perform. Under isothermal conditions, DNA is amplified with high specificity and rapidity. Moreover, visual judgment of color change without further post-amplification processing makes the method convenient. The present study was undertaken to detect P. kuehnii genomic DNA using four primers corresponding to a unique DNA sequence of P. kuehnii. The LAMP assay was found to be optimal when 8 mM MgSO4 was used and the reaction was incubated at 63 °C for 90 min. Positive samples showed a color change from orange to green upon SYBR Green I dye addition. Specificity of the LAMP test was checked with DNA of P. melanocephala, which showed no reaction. Sensitivity of the LAMP method was observed to be the same as real-time PCR at 0.1 ng, thus providing a rapid and more affordable option for early disease detection.


Subject(s)
Basidiomycota/isolation & purification , Nucleic Acid Amplification Techniques/methods , Saccharum/microbiology , Basidiomycota/genetics , DNA, Fungal/analysis , Plant Diseases/microbiology , Sensitivity and Specificity , Temperature
9.
Mol Biol Rep ; 42(8): 1309-16, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25861736

ABSTRACT

Red rot, caused by Colletotrichum falcatum, is a destructive disease prevalent in most sugarcane-producing countries. Disease-free sugarcane planting materials (setts) are essential as the pathogen spreads primarily through infected setts. The present study was undertaken to develop a loop-mediated isothermal amplification (LAMP) assay for the detection of C. falcatum. C. falcatum genomic DNA was isolated from pure mycelium culture and infected tissues. Four sets of primers corresponding to a unique DNA sequence specific to C. falcatum were designed. Specificity of the LAMP test was checked with DNA of another fungal pathogen of sugarcane, Puccinia melanocephala, as well as two closely-related species, Colletotrichum fructivorum and Colletotrichum acutatum. No reaction was found with the three pathogens. When C. falcatum DNA from pure culture was used in a detection limit analysis, sensitivity of the LAMP method was observed to be ten times higher than that of conventional PCR; however, sensitivity was only 5 times higher when DNA from C. falcatum-infected tissues was used. Using the LAMP assay, C. falcatum DNA is amplified with high specificity, efficiency, and rapidity under isothermal conditions. Moreover, visual judgment of color change in <1 h without further post-amplification processing makes the LAMP method convenient, economical, and useful in diagnostic laboratories and the field.


Subject(s)
Colletotrichum/isolation & purification , Nucleic Acid Amplification Techniques , Plant Diseases/microbiology , Saccharum/microbiology , Colletotrichum/genetics , DNA, Fungal/chemistry , Sensitivity and Specificity
10.
J Virol Methods ; 212: 23-9, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25445794

ABSTRACT

A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for detecting Sugarcane mosaic virus (SCMV) and Sorghum mosaic virus (SrMV) in sugarcane. Six sets of four primers corresponding to the conserved coat protein gene were designed and tested for each virus. Three primer sets designed for detecting SCMV and four for detecting SrMV were successful in the RT-LAMP assay. The effective primer sets were not only specific for their target virus, but also able to detect multiple virus strains. The magnesium sulfate concentration of the reaction solution was optimized, with both viruses requiring a minimum of 5mM for detection. The sensitivity of this RT-LAMP assay was less than that of conventional and real-time RT-PCR.


Subject(s)
Nucleic Acid Amplification Techniques/methods , Potyvirus/isolation & purification , Saccharum/virology , DNA Primers/genetics , Potyvirus/genetics , Reverse Transcription , Sensitivity and Specificity , Temperature
11.
Genome ; 57(6): 363-72, 2014 Jun.
Article in English | MEDLINE | ID: mdl-25247737

ABSTRACT

Though sugarcane cultivars (Saccharum spp. hybrids) are complex aneupolyploid hybrids, genetic evaluation and tracking of clone- or cultivar-specific alleles become possible through capillary electrophoresis (CE) using fluorescence-labeled SSR markers. Twenty-four sugarcane cultivars, 12 each from India and the USA, were genetically assessed using 21 fluorescence-labeled polymorphic SSR markers. These markers primed the amplification of 213 alleles. Of these alleles, 161 were common to both Indian and US cultivars, 25 were specific to the Indian cultivars, and 27 were observed only in the US cultivars. Only 10 alleles were monomorphic. A high level of heterozygosity was observed in both Indian (82.4%) and US (91.1%) cultivars resulting in average polymorphism information content (PIC) values of 0.66 and 0.77 and marker index (MI) values of 5.07 and 5.58, respectively. Pearson correlation between PIC and MI was significant in both sets of cultivars (r = 0.58 and 0.69). UPGMA clustering separated cultivars into three distinct clusters at 59% homology level. These results propose the potential utility of six Indian cultivar-specific SSR alleles (mSSCIR3_182, SMC486CG_229, SMC36BUQ_125, mSSCIR74_216, SMC334BS_154, and mSSCIR43_238) in sugarcane breeding, vis a vis transporting CE-based evaluation in clone or variety identity testing, cross fidelity assessments, and genetic relatedness among species of the genus Saccharum and related genera.


Subject(s)
Electrophoresis, Capillary/methods , Microsatellite Repeats , Saccharum/genetics , Alleles , Fluorescence , Genetic Variation , India , Phylogeny , United States
12.
J Virol Methods ; 167(2): 140-5, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20362003

ABSTRACT

Sugarcane infected with Sugarcane yellow leaf virus (SCYLV) rarely produces visual symptoms until late in the growing season. High-resolution, hyperspectral reflectance data from SCYLV-infected and non-infected leaves of two cultivars, LCP 85-384 and Ho 95-988, were measured and analyzed on 13 July, 12 October, and 4 November 2005. All plants were asymptomatic. Infection was determined by reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. Results from discriminant analysis showed that leaf reflectance was effective at predicting SCYLV infection in 73% of the cases in both cultivars using resubstitution and 63% and 62% in LCP 85-384 and Ho 95-988, respectively, using cross-validation. Predictive equations were improved when data from sampling dates were analyzed individually. SCYLV infection influenced the concentration of several leaf pigments including violaxanthin, beta-carotene, neoxanthin, and chlorophyll a. Pigment data were effective at predicting SCYLV infection in 80% of the samples in the combined data set using the derived discriminant function with resubstitution, and 71% with cross-validation. Although further research is needed to improve the accuracy of the predictive equations, the results of this study demonstrate the potential application of hyperspectral remote sensing as a rapid, field-based method of identifying SCYLV-infected sugarcane plants prior to symptom expression.


Subject(s)
Luteoviridae/isolation & purification , Plant Diseases/virology , Plant Leaves/virology , Saccharum/virology , Spectrum Analysis/methods , Virology/methods , Pigments, Biological/analysis , Plant Leaves/chemistry , Saccharum/chemistry
13.
Phytopathology ; 97(6): 748-55, 2007 Jun.
Article in English | MEDLINE | ID: mdl-18943606

ABSTRACT

ABSTRACT The extent of spatial and temporal variability of sugarcane rust (Puccinia melanocephala) infestation was related to variation in soil properties in five commercial fields of sugarcane (interspecific hybrids of Saccharum spp., cv. LCP 85-384) in southern Louisiana. Sugarcane fields were grid-soil sampled at several intensities and rust ratings were collected at each point over 6 to 7 weeks. Soil properties exhibited significant variability (coefficients of variation = 9 to 70.1%) and were spatially correlated in 39 of 40 cases with a range of spatial correlation varying from 39 to 201 m. Rust ratings were spatially correlated in 32 of 33 cases, with a range varying from 29 to 241 m. Rust ratings were correlated with several soil properties, most notably soil phosphorus (r = 0.40 to 0.81) and soil sulfur (r = 0.36 to 0.68). Multiple linear regression analysis resulted in coefficients of determination that ranged from 0.22 to 0.73, and discriminant analysis further improved the overall predictive ability of rust models. Finally, contour plots of soil properties and rust levels clearly suggested a link between these two parameters. These combined data suggest that sugarcane growers that apply fertilizer in excess of plant requirements will increase the incidence and severity of rust infestations in their fields.

SELECTION OF CITATIONS
SEARCH DETAIL