Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep Methods ; 2(7): 100255, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35880023

ABSTRACT

Neuronal cultures provide a basis for reductionist insights that rely on molecular and pharmacological manipulation. However, the inability to culture mature adult CNS neurons limits our understanding of adult neuronal physiology. Here, we report methods for culturing adult central nervous system neurons in large numbers and across multiple brain regions for extended time periods. Primary adult neuronal cultures develop polarity; they establish segregated dendritic and axonal compartments, maintain resting membrane potentials, exhibit spontaneous and evoked electrical activity, and form neural networks. Cultured adult neurons isolated from different brain regions such as the hippocampus, cortex, brainstem, and cerebellum exhibit distinct cell morphologies, growth patterns, and spontaneous firing characteristics reflective of their regions of origin. Using adult motor cortex cultures, we identify a CNS "conditioning" effect after spinal cord injury. The ability to culture adult neurons offers a valuable tool for studying basic and therapeutic science of the brain.


Subject(s)
Central Nervous System Diseases , Neurons , Humans , Central Nervous System , Axons/physiology , Brain
2.
Bioconjug Chem ; 31(5): 1497-1509, 2020 05 20.
Article in English | MEDLINE | ID: mdl-32337973

ABSTRACT

We detail the preparation of highly fluorescent quantum dots (QDs), surface-engineered with multifunctional polymer ligands that are compact and readily compatible with strain-promoted click conjugation, and the use of these nanocrystals in immunofluorescence and in vivo imaging. The ligand design combines the benefits of mixed coordination (i.e., thiol and imidazole) with zwitterion motifs, yielding sterically-stabilized QDs that present a controllable number of azide groups, for easy conjugation to biomolecules via the selective click chemistry. The polymer coating was characterized using NMR spectroscopy to extract estimates of the diffusion coefficient, hydrodynamic size, and ligand density. The azide-functionalized QDs were conjugated to anti-tropomyosin receptor kinase B antibody (α-TrkB) or to the brain-derived neurotrophic factor (BDNF). These conjugates were highly effective for labeling the tropomyosin receptor kinase B (TrkB) in pyramidal neurons within cortical tissue and for monitoring the BDNF induced activation of TrkB signaling in live neuronal cells. Finally, the polymer-coated QDs were applied for in vivo imaging of Drosophila melanogaster embryos, where the QDs remained highly fluorescent and colloidally stable, with no measurable cytotoxicity. These materials would be of great use in various imaging applications, where a small size, ease of conjugation, and great colloidal stability for in vivo studies are needed.


Subject(s)
Fluorescent Antibody Technique , Fluorescent Dyes/chemistry , Optical Imaging/methods , Polymers/chemistry , Quantum Dots/chemistry , Animals , Azides/chemistry , Cell Line , Click Chemistry , Drosophila melanogaster/embryology , Imidazoles/chemistry , Ligands , Neurons/cytology , Particle Size , Signal Transduction , Sulfhydryl Compounds/chemistry
3.
Brain Struct Funct ; 225(3): 1019-1032, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32189114

ABSTRACT

Williams syndrome (WS) is a rare neurodevelopmental disorder caused by the hemideletion of approximately 25-28 genes at 7q11.23. Its unusual social and cognitive phenotype is most strikingly characterized by the disinhibition of social behavior, in addition to reduced global IQ, with a relative sparing of language ability. Hypersociality and increased social approach behavior in WS may represent a unique inability to inhibit responses to specific social stimuli, which is likely associated with abnormalities of frontostriatal circuitry. The striatum is characterized by a diversity of interneuron subtypes, including inhibitory parvalbumin-positive interneurons (PV+) and excitatory cholinergic interneurons (Ch+). Animal model research has identified an important role for these specialized cells in regulating social approach behavior. Previous research in humans identified a depletion of interneuron subtypes associated with neuropsychiatric disorders. Here, we examined the density of PV+ and Ch+ interneurons in the striatum of 13 WS and neurotypical (NT) subjects. We found a significant reduction in the density of Ch+ interneurons in the medial caudate nucleus and nucleus accumbens, important regions receiving cortical afferents from the orbitofrontal and ventromedial prefrontal cortex, and circuitry involved in language and reward systems. No significant difference in the distribution of PV+ interneurons was found. The pattern of decreased Ch+ interneuron densities in WS differs from patterns of interneuron depletion found in other disorders.


Subject(s)
Cholinergic Neurons/pathology , Corpus Striatum/pathology , Interneurons/pathology , Williams Syndrome/pathology , Adolescent , Adult , Aged , Choline O-Acetyltransferase/analysis , Female , Humans , Male , Middle Aged , Parvalbumins/analysis , Young Adult
4.
Am J Phys Anthropol ; 170(3): 351-360, 2019 11.
Article in English | MEDLINE | ID: mdl-31260092

ABSTRACT

OBJECTIVES: The serotonergic system is involved in the regulation of socio-emotional behavior and heavily innervates the amygdala, a key structure of social brain circuitry. We quantified serotonergic axon density of the four major nuclei of the amygdala in humans, and examined our results in light of previously published data sets in chimpanzees and bonobos. MATERIALS AND METHODS: Formalin-fixed postmortem tissue sections of the amygdala from six humans were stained for serotonin transporter (SERT) utilizing immunohistochemistry. SERT-immunoreactive (ir) axon fiber density in the lateral, basal, accessory basal, and central nuclei of the amygdala was quantified using unbiased stereology. Nonparametric statistical analyses were employed to examine differences in SERT-ir axon density between amygdaloid nuclei within humans, as well as differences between humans and previously published data in chimpanzees and bonobos. RESULTS: Humans displayed a unique pattern of serotonergic innervation of the amygdala, and SERT-ir axon density was significantly greater in the central nucleus compared to the lateral nucleus. SERT-ir axon density was significantly greater in humans compared to chimpanzees in the basal, accessory basal, and central nuclei. SERT-ir axon density was greater in humans compared to bonobos in the accessory basal and central nuclei. CONCLUSIONS: The human pattern of SERT-ir axon distribution in the amygdala complements the redistribution of neurons in the amygdala in human evolution. The present findings suggest that differential serotonergic modulation of cognitive and autonomic pathways in the amygdala in humans, bonobos, and chimpanzees may contribute to species-level differences in social behavior.


Subject(s)
Amygdala/chemistry , Amygdala/cytology , Serotonin Plasma Membrane Transport Proteins/analysis , Adult , Aged , Anthropology, Physical , Biological Evolution , Female , Humans , Immunohistochemistry , Male , Neurons/chemistry , Neurons/cytology , Serotonin Plasma Membrane Transport Proteins/chemistry , Social Behavior , Young Adult
5.
Brain Struct Funct ; 223(4): 1897-1907, 2018 May.
Article in English | MEDLINE | ID: mdl-29270815

ABSTRACT

Perturbations to the amygdala have been observed in neurological disorders characterized by abnormalities in social behavior, such as autism and schizophrenia. Here, we quantitatively examined the amygdala in the postmortem human brains of male and female individuals diagnosed with Williams Syndrome (WS), a neurodevelopmental disorder caused by a well-defined deletion of ~ 26 genes, and accompanied by a consistent behavioral profile that includes profound hypersociability. Using unbiased stereological sampling, we estimated nucleus volume, number of neurons, neuron density, and neuron soma area in four major amygdaloid nuclei- the lateral nucleus, basal nucleus, accessory basal nucleus, and central nucleus- in a sample of five adult and two infant WS brains and seven age-, sex- and hemisphere-matched typically developing control (TD) brains. Boundaries of the four nuclei examined were drawn on Nissl-stained coronal sections as four separate regions of interest for data collection. We found that the lateral nucleus contains significantly more neurons in WS compared to TD. WS and TD do not demonstrate significant differences in neuron number in the basal, accessory basal, or central nuclei, and there are no significant differences between WS and TD in nuclei volume, neuron density, and neuron soma area in any of the four nuclei. A similarly designed study reported a decrease in lateral nucleus neuron number in autism, mirroring the opposing extremes of the two disorders in the social domain. These results suggest that the number of neurons in the lateral nucleus may contribute to pathological disturbances in amygdala function and sociobehavioral phenotype.


Subject(s)
Amygdala/pathology , Diagnosis , Stereotaxic Techniques , Williams Syndrome/pathology , Adolescent , Adult , Case-Control Studies , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Neurons/pathology
6.
Dev Neurobiol ; 78(5): 531-545, 2018 May.
Article in English | MEDLINE | ID: mdl-29090517

ABSTRACT

Williams syndrome (WS) is a rare neurodevelopmental disorder with a well-described, known genetic etiology. In contrast to Autism Spectrum Disorders (ASD), WS has a unique phenotype characterized by global reductions in IQ and visuospatial ability, with relatively preserved language function, enhanced reactivity to social stimuli and music, and an unusual eagerness to interact socially with strangers. A duplication of the deleted region in WS has been implicated in a subset of ASD cases, defining a spectrum of genetic and behavioral variation at this locus defined by these opposite extremes in social behavior. The hypersociability characteristic of WS may be linked to abnormalities of frontostriatal circuitry that manifest as deficits in inhibitory control of behavior. Here, we examined the density of neurons and glia in associative and limbic territories of the striatum including the caudate, putamen, and nucleus accumbens regions in Nissl stained sections in five pairs of age, sex, and hemisphere-matched WS and typically-developing control (TD) subjects. In contrast to what is reported in ASD, no significant increase in overall neuron density was observed in this study. However, we found a significant increase in the density of glia in the dorsal caudate nucleus, and in the ratio of glia to neurons in the dorsal and medial caudate nucleus in WS, accompanied by a significant increase in density of oligodendrocytes in the medial caudate nucleus. These cellular abnormalities may underlie reduced frontostriatal activity observed in WS, with implications for understanding altered connectivity and function in ASD. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 531-545, 2018.


Subject(s)
Caudate Nucleus/pathology , Neuroglia/pathology , Williams Syndrome/pathology , Adolescent , Adult , Autism Spectrum Disorder/pathology , Cell Count , Female , Humans , Male , Middle Aged , Neurons/pathology , Nucleus Accumbens/pathology , Putamen/pathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...