Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
J Control Release ; 329: 1162-1171, 2021 01 10.
Article in English | MEDLINE | ID: mdl-33127451

ABSTRACT

Nanoparticles must recognize, adhere to, and/or traverse multiple barriers in sequence to achieve cytosolic drug delivery. New nanoparticles often exhibit a unique ability to cross a single barrier (i.e. the vasculature, cell membrane, or endosomal compartment), but fail to deliver an adequate dose to intracellular sites of action because they cannot traverse other biological barriers for which they were not optimized. Here, we developed poly(acrylamide-co-methacrylic acid) nanogels that were modified in a modular manner with bioactive peptides. This nanogel does not recognize target cells or disrupt endosomal vesicles in its unmodified state, but can incorporate peptides with molecular recognition or environmentally responsive properties. Nanogels were modified with up to 15 wt% peptide without significantly altering their size, surface charge, or stability in aqueous buffer. Nanogels modified with a colon cancer-targeting oligopeptide exhibited up to a 324% enhancement in co-localization with SW-48 colon cancer cells in vitro, while influencing nanogel uptake by fibroblasts and macrophages to a lesser extent. Nanogels modified with an endosome disrupting peptide failed to retain its native endosomolytic activity, when coupled either individually or in combination with the targeting peptide. Our results offer a proof-of-concept for modifying synthetic nanogels with a combination of peptides that address barriers to cytosolic delivery individually and in tandem. Our data further motivate the need to identify endosome disrupting moieties which retain their activity within poly(acidic) networks.


Subject(s)
Nanoparticles , Acrylamides , Endosomes , Methacrylates , Nanogels , Peptides
3.
Biomacromolecules ; 21(4): 1528-1538, 2020 04 13.
Article in English | MEDLINE | ID: mdl-32207917

ABSTRACT

Tuning the composition of antimicrobial nanogels can significantly alter both nanogel cytotoxicity and antibacterial activity. This project investigated the extent to which PEGylation of cationic, hydrophobic nanogels altered their cytotoxicity and bactericidal activity. These biodegradable, cationic nanogels were synthesized by activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) emulsion polymerization with up to 13.9 wt % PEG (MW = 2000) MA, as verified by 1H NMR. Nanogel bactericidal activity was assessed against Gram-negative E. coli and P. aeruginosa and Gram-positive S. mutans and S. aureus by measuring membrane lysis with a LIVE/DEAD assay. E. coli and S. mutans viability was further validated by measuring metabolic activity with a PrestoBlue assay and imaging bacteria stained with a LIVE/DEAD probe. All tested nanogels decreased the membrane integrity (0.5 mg/mL dose) for Gram-negative E. coli and P. aeruginosa, irrespective of the extent of PEGylation. PEGylation (13.9 wt %) increased the cytocompatibility of cationic nanogels toward RAW 264.7 murine macrophages and L929 murine fibroblasts by over 100-fold, relative to control nanogels. PEGylation (42.8 wt %) reduced nanogel uptake by 43% for macrophages and 63% for fibroblasts. Therefore, PEGylation reduced nanogel toxicity to mammalian cells without significantly compromising their bactericidal activity. These results facilitate future nanogel design for perturbing the growth of Gram-negative bacteria.


Subject(s)
Escherichia coli , Staphylococcus aureus , Animals , Mice , Nanogels , Polyethylene Glycols , Polyethyleneimine
4.
J Biomed Mater Res A ; 105(6): 1565-1574, 2017 06.
Article in English | MEDLINE | ID: mdl-28177574

ABSTRACT

Molecularly imprinted polymers (MIPs) with selective affinity for protein biomarkers could find extensive utility as environmentally robust, cost-efficient biomaterials for diagnostic and therapeutic applications. In order to develop recognitive, synthetic biomaterials for prohibitively expensive protein biomarkers, we have developed a molecular imprinting technique that utilizes structurally similar, analogue proteins. Hydrogel microparticles synthesized by molecular imprinting with trypsin, lysozyme, and cytochrome c possessed an increased affinity for alternate high isoelectric point biomarkers both in isolation and plasma-mimicking adsorption conditions. Imprinted and non-imprinted P(MAA-co-AAm-co-DEAEMA) microgels containing PMAO-PEGMA functionalized polycaprolactone nanoparticles were net-anionic, polydisperse, and irregularly shaped. MIPs and control non-imprinted polymers (NIPs) exhibited regions of Freundlich and BET isotherm adsorption behavior in a range of non-competitive protein solutions, where MIPs exhibited enhanced adsorption capacity in the Freundlich isotherm regions. In a competitive condition, imprinting with analogue templates (trypsin, lysozyme) increased the adsorption capacity of microgels for cytochrome c by 162% and 219%, respectively, as compared to a 122% increase provided by traditional bulk imprinting with cytochrome c. Our results suggest that molecular imprinting with analogue protein templates is a viable synthetic strategy for enhancing hydrogel-biomarker affinity and promoting specific protein adsorption behavior in biological fluids. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1565-1574, 2017.


Subject(s)
Hydrogels/chemistry , Molecular Imprinting/methods , Nanoparticles/chemistry , Polyesters/chemistry , Polymers/chemistry , Proteins/isolation & purification , Adsorption , Animals , Awards and Prizes , Biocompatible Materials/chemistry , Biomarkers/analysis , Cattle , Chickens , Isoelectric Point , Nanoparticles/ultrastructure , Polyanhydrides/chemistry , Polyethylene Glycols/chemistry , Proteins/analysis , Students
SELECTION OF CITATIONS
SEARCH DETAIL
...