Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 15(18)2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37765579

ABSTRACT

Aqueous polyurethane is an environmentally friendly, low-cost, high-performance resin with good abrasion resistance and strong adhesion. Cationic aqueous polyurethane is limited in cathodic electrophoretic coatings due to its complicated preparation process and its poor stability and single performance after emulsification and dispersion. The introduction of perfluoropolyether alcohol (PFPE-OH) and light curing technology can effectively improve the stability of aqueous polyurethane emulsions, and thus enhance the functionality of coating films. In this paper, a new UV-curable fluorinated polyurethane-based cathodic electrophoretic coating was prepared using cationic polyurethane as a precursor, introducing PFPE-OH capping, and grafting hydroxyethyl methacrylate (HEMA). The results showed that the presence of perfluoropolyether alcohol in the structure affected the variation of the moisture content of the paint film after flash evaporation. Based on the emulsion particle size and morphology tests, it can be assumed that the fluorinated cationic polyurethane emulsion is a core-shell structure with hydrophobic ends encapsulated in the polymer and hydrophilic ends on the outer surface. After abrasion testing and baking, the fluorine atoms of the coating were found to increase from 8.89% to 27.34%. The static contact angle of the coating to water was 104.6 ± 3°, and the water droplets rolled off without traces, indicating that the coating is hydrophobic. The coating has excellent thermal stability and tensile properties. The coating also passed the tests of impact resistance, flexibility, adhesion, and resistance to chemical corrosion in extreme environments. This study provides a new idea for the construction of a new and efficient cathodic electrophoretic coating system, and also provides more areas for the promotion of cationic polyurethane to practical applications.

2.
Nanoscale Adv ; 5(9): 2501-2507, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37143799

ABSTRACT

A suitable magnetic anisotropy energy (MAE) is a key factor for magnetic materials. However, an effective MAE control method has not yet been achieved. In this study, we propose a novel strategy to manipulate MAE by rearranging the d-orbitals of metal atoms with oxygen functionalized metallophthalocyanine (MPc) by first-principles calculations. By the dual regulation of electric field and atomic adsorption, we have achieved a substantial amplification of the single regulation method. The use of O atoms to modify the metallophthalocyanine (MPc) sheets effectively adjusts the orbital arrangement of the electronic configuration in the d-orbitals of the transition metal near the Fermi level, thereby modulating the MAE of the structure. More importantly, the electric field amplifies the effect of electric-field regulation by adjusting the distance between the O atom and metal atom. Our results demonstrate a new approach to modulating the MAE of two-dimensional magnetic films for practical application in information storage.

3.
ACS Appl Mater Interfaces ; 15(15): 19447-19458, 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37037788

ABSTRACT

Liquid-free ionic conductive elastomers (ICEs) are ideal materials for wearable strain sensors in increasingly flexible electronic devices. However, developing recyclable ICEs with high elasticity, self-healability, and recyclability is still a great challenge. In this study, we fabricated a series of novel ICEs by in situ polymerization of lipoic acid (LA) in poly(acrylic acid) (PAA) solution and cross-linking by coordination bonding and hydrogen bonding. One of the obtained dynamically cross-linked interlocking double-network ICEs, PLA-PAA4-1% ICE, showed excellent mechanical properties, with high elasticity (90%) and stretchability (610%), as well as rapid self-healability (mechanical self-healing within 2 h and electrical recovery within 0.3 s). The PLA-PAA4-1% ICE was used as a strain sensor and possessed excellent linear sensitivity and highly cyclic stability, effectively monitoring diverse human motions with both stretched and compressed deformations. Notably, the PLA-PAA4-1% ICE can be fully recycled and reused as a new strain sensor without any structure change or degradation in performance. This work provided a viable path to fabricate conductive materials by solving the two contradictions of high mechanical property and self-healability, and structure stability and recyclability. We believe that the superior overall performance and feasible fabrication make the developed PLA-PAA4-1% ICE hold great promise as a multifunctional strain sensor for practical applications in flexible wearable electronic devices and humanoid robotics.

4.
Plants (Basel) ; 10(10)2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34685942

ABSTRACT

Watermelon (Citrullus lanatus) is a globally important Cucurbitaceae crop in which grafting is commonly used to improve stress tolerance and enhance nutrient utilization. However, the mechanism underlying grafting-enhanced nutrient assimilation remains unclear. Here, we demonstrate the possible involvement of a novel Cucurbitaceae miRNA, ClmiR86, in grafting-enhanced phosphate-starvation tolerance via CALCINEURIN B-LIKE INTERACTING PROTEIN KINASE 5 (ClCIPK5) suppression in watermelon. Transcript analyses revealed that the induction of ClmiR86 expression was correlated with the downregulation of ClCIPK5 in squash-grafted watermelon under phosphate starvation. In addition, the differential expression of ClmiR86 in various watermelon genotypes was consistent with their phosphate utilization efficiency. Furthermore, ClmiR86 overexpression in Arabidopsis enhanced root growth and phosphate uptake under phosphate starvation and promoted inflorescence elongation under normal conditions. These results suggest that the ClmiR86-ClCIPK5 axis is involved in phosphate starvation response as well as grafting-enhanced growth vigor and phosphate assimilation. The present study provides valuable insights for investigating long-distance signaling and nutrient utilization in plants.

5.
ACS Nano ; 15(9): 15039-15046, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34495636

ABSTRACT

In this work, the interlayer coupling dependent lithium intercalation induced phase transition in bilayer MoS2 (BL-MoS2) was investigated using an atomic-resolution annual dark-field scanning transmission electron microscope (ADF-STEM). It was revealed that the lithiation induced H → T' phase transition in BL-MoS2 strongly depended on the interlayer twist angle; i.e., the H → T' phase transition occurred in well-stacked H phase BL-MoS2 (with a twist angle of θt = 0°) but not for θt ≠ 0° BL-MoS2. The lithiated BL-MoS2 appeared in homophase stacking, either T'/T' or H/H (locally, no phase transformation) stacking, without any heterophase stacking such as H/T' or T'/H observed. This finding indicated the H → T' phase transition occurred via a domain-by-domain mode rather than layer-by-layer. Up to 15 types of stacking orders were experimentally identified locally in lithiated bilayer T'-MoS2, and the formation mechanism was attributed to the discrete interlayer translation with a unit step of (m/6a, n/6b) (m, n = 0, 1, 2, 3), where a and b were the primitive lattice vectors of T'-MoS2. Our experimental results were further corroborated by ab initio density functional theory (DFT) calculations, where the occurrence of different stacking orders can be quantitatively correlated with the variation of intercalated lithium contents into the BL-MoS2. The present study aids in the understanding of the phase transition mechanisms in atomically thin 2D transition metal dichalcogenides (TMDCs) and will also shed light on the precisely controlled phase engineering of 2D materials for memory applications.

6.
Nanoscale ; 12(15): 8285-8293, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32236196

ABSTRACT

Structural defects in crystals are generally believed to disrupt the symmetry of the pristine lattice, but sometimes, they can also serve as the constituent elements of new structures if they are arranged in a well-ordered pattern. Herein, choosing 2D transition metal dichalcogenides (TMDCs) as a model system, we successfully fabricated a novel group of 2D materials-M2X3 (M = Mo, W, X = S, Se) via the periodic assembly of chalcogen vacancy lines in their corresponding MX2 monolayers (such as MoS2). Our ab initio calculations further revealed that these monolayer M2X3 materials electronically exhibit quasi-direct narrow band-gap semiconducting characteristics, e.g., Eg = 0.89 eV for Mo2S3, and show ultra-high phonon-limited room-temperature carrier mobility up to ∼27 000 cm2 V-1 s-1 for electrons in Mo2S3. The emergence of these novel M2X3 materials expands the existing 2D family and provides new platforms for both fundamental research and practical applications, and the approach via the periodic assembly of ordered defects should also be applicable to other 2D materials.

7.
Polymers (Basel) ; 12(4)2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32295271

ABSTRACT

In this study, a polysiloxane grafted by thermotropic liquid crystal polymer (PSCTLCP) is designed and synthesized to effectively improve the processability and toughness of magnesium hydroxide (MH)/linear low-density polyethylene (LLDPE) composites. The obtained PSCTLCP is a nematic liquid crystal polymer; the liquid crystal phase exists in a temperature range of 170 to 275 °C, and its initial thermal decomposition temperature is as high as 279.6 °C, which matches the processing temperature of MH/LLDPE composites. With the increase of PSCTLCP loading, the balance melt torque of MH/LLDPE/PSCTLCP composites is gradually decreased by 42% at 5 wt % PSCTLCP loading. Moreover, the power law index of MH/LLDPE/PSCTLCP composite melt is smaller than 1, but gradually increased with PSCTLCP, the flowing activation energy of PSCTLCP-1.0 is lower than that of MH/LLDPE at the same shear rate, indicating that the sensitivity of apparent melt viscosity of the composites to shear rate and to temperature is decreased with the increase of PSCTLCP, and the processing window is broadened by the addition of PSCTLCP. Besides, the elongation at break of MH/LLDPE/PSCTLCP composites increases from 6.85% of the baseline MH/LLDPE to 17.66% at 3 wt % PSCTLCP loading. All the results indicate that PSCTLCP can significantly improve the processability and toughness of MH/LLDPE composites.

8.
Sensors (Basel) ; 19(9)2019 May 08.
Article in English | MEDLINE | ID: mdl-31071927

ABSTRACT

The unique properties of MoS2 nanosheets make them a promising candidate for high-performance room temperature gas detection. Herein, few-layer MoS2 nanosheets (FLMN) prepared via mechanical exfoliation are coated on a substrate with interdigital electrodes for room-temperature NO2 detection. Interestingly, compared with other NO2 gas sensors based on MoS2, FLMN gas sensors exhibit high responsivity for room-temperature NO2 detection, and NO2 is easily desorbed from the sensor surface with an ultrafast recovery behavior, with recovery times around 2 s. The high responsivity is related to the fact that the adsorbed NO2 can affect the electron states within the entire material, which is attributed to the very small thickness of the MoS2 nanosheets. First-principles calculations were carried out based on the density functional theory (DFT) to verify that the ultrafast recovery behavior arises from the weak van der Waals binding between NO2 and the MoS2 surface. Our work suggests that FLMN prepared via mechanical exfoliation have a great potential for fabricating high-performance NO2 gas sensors.

9.
ACS Appl Mater Interfaces ; 11(9): 9438-9447, 2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30753054

ABSTRACT

The modification of the material surface by the second-phase particles enables the electron interaction on the Fermi level or the energy band between different materials, which can achieve the improvement of gas-sensing properties. Herein, a novel composite of PbS quantum-dots-modified MoS2 (MoS2/PbS) is synthesized by combination of hydrothermal method with chemical precipitation and fabricated into the gas sensor to investigate its enhanced gas-sensing properties caused by the modification of PbS quantum dots at room temperature. It is found that the responsivity of MoS2/PbS is obviously higher than that of pure MoS2 gas sensor throughout the whole test range, and MoS2/PbS gas sensor has better selectivity compared with pure MoS2 gas sensor at room temperature. The response of MoS2/PbS gas sensor is about 50 times higher than that of MoS2 gas sensor at 100 ppm NO2 concentration. The recovery behavior is greatly improved, and the resistance of MoS2/PbS gas sensor can return completely with almost no drift (the recovery ratio is more than 99%). The enhanced gas-sensing properties of MoS2/PbS, which are superior to those of pure MoS2, are ascribed to the large surface area of MoS2 combined with the high responsivity of PbS quantum dots for NO2. The formation of heterojunctions leads to the competitive adsorption of the target gases, which can prevent MoS2 from being oxidized, further improving the stability of gas sensor. Furthermore, to profoundly discuss the enhanced performances and the sensing mechanism, the molecular models of adsorption systems are constructed to calculate the adsorption energies and the diffusion characters of NO2 via density functional theory. We expect that our work can offer a useful guideline for enhancing the gas-sensing properties at room temperature.

10.
PLoS One ; 11(12): e0167325, 2016.
Article in English | MEDLINE | ID: mdl-27936019

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is the main causative agent of porcine diarrhea, which has resulted in devastating damage to swine industry and become a perplexed global problem. PEDV infection causes lesions and clinical symptoms, and infected pigs often succumb to severe dehydration. If there is not a timely and effective method to control its infection, PEDV will spread rapidly across the whole swine farm. Therefore, preclinical identification of PEDV is of great significance for preventing the outbreak and spread of this disease. In this study, a functionalized nanoparticles-based PCR method (UNDP-PCR) specific for PEDV was developed through systematic optimization of functionalized magnetic beads and gold nanoparticles which were further used to specifically enrich viral RNA from the lysate of PEDV stool samples, forming a MMPs-RNA-AuNPs complex. Then, oligonucleotides specific for PEDV coated on AuNPs were eluted from the complex and were further amplified and characterized by PCR. The detection limitation of the established UNDP-PCR method for PEDV was 25 copies in per gram PEDV stool samples, which is 400-fold more sensitive than conventional RT-PCR for stool samples. The UNDP-PCR for PEDV exhibited reliable reproducibility and high specificity, no cross-reaction was observed with other porcine viruses. In 153 preclinical fecal samples, the positive detection rate of UNDP-PCR specific for PEDV (30.72%) was much higher than that of conventional RT-PCR (5.88%) and SYBR Green real-time RT-PCR. In a word, this study provided a RNA extraction and transcription free, rapid and economical method for preclinical PEDV infection, which showed higher sensitivity, specificity and reproducibility, and exhibited application potency for evaluating viral loads of preclinical samples.


Subject(s)
Coronavirus Infections/veterinary , Feces/virology , Porcine epidemic diarrhea virus/isolation & purification , RNA, Viral/isolation & purification , Swine Diseases/diagnosis , Swine/virology , Animals , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Gold/chemistry , Metal Nanoparticles/chemistry , Polymerase Chain Reaction/methods , Porcine epidemic diarrhea virus/genetics , RNA, Viral/genetics , Swine Diseases/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...