ABSTRACT
The xanthone lichenxanthone did not show toxic effects (LC50>1.0â mg/mL). lichenxanthone prevented nociceptive behavior induced by acidic saline, and its analgesic effect was blocked by amiloride, highlighting the involvement of neuromodulation of acid-sensitive ion channels (ASICs). In the analysis of anti-inflammatory activity, concentrations of 0.1 and 0.5â mg/mL of lichenxanthone reduced the edema induced by k-carrageenan 3.5 %, observed from the fourth hour of analysis. This effect was similar to that observed with ibuprofen (positive control). No leukocyte infiltrates were observed in lichenxanthone, suggesting that the compound acts in the acute inflammatory response. The results of the molecular docking study revealed that lichenxanthone exhibited better affinity energy when compared to the ibuprofen control against the two targets evaluated.
Subject(s)
Ibuprofen , Zebrafish , Animals , Molecular Docking Simulation , Anti-Inflammatory Agents/pharmacology , Ion ChannelsABSTRACT
The Zika virus (ZIKV) is a great concern for global health due to its high transmission, including disseminating through blood, saliva, urine, semen and vertical transmission. In some cases, ZIKV has been associated with microcephaly, neurological disorders, and Guillain−Barré syndrome. There is no vaccine, and controlling the disease is a challenge, especially with the co-circulation of the Dengue virus, which causes a severe cross-reaction due to the similarity between the two arboviruses. Considering that electrochemical immunosensors are well-established, sensitive, and practical tools for diagnosis, in this study we developed a sensor platform with intrinsic redox activity that facilitates measurement readouts. Prussian blue (PB) has a great ability to form electrocatalytic surfaces, dispensing redox probe solutions in voltammetric measurements. Herein, PB was incorporated into a chitosan−carbon nanotube hybrid, forming a nanocomposite that was drop-casted on a screen-printed electrode (SPE). The immunosensor detected the envelope protein of ZIKV in a linear range of 0.25 to 1.75 µg/mL (n = 8, p < 0.01), with a 0.20 µg/mL limit of detection. The developed immunosensor represents a new method for electrochemical measurements without additional redox probe solutions, and it is feasible for application in point-of-care diagnosis.
Subject(s)
Biosensing Techniques , Zika Virus Infection , Zika Virus , Biosensing Techniques/methods , Ferrocyanides , Humans , Immunoassay , Oxidation-Reduction , Zika Virus Infection/diagnosisABSTRACT
Visceral leishmaniasis is a Neglected Tropical Disease of high mortality caused by the protozoan Leishmania infantum. Its transmission cycle is complex, and it has in the domestic dog its main reservoir. The diagnostic tests currently used rely on prokaryotic systems' proteins, but their low sensitivity increases the disease's burden. The plant transient expression of recombinant proteins allows the production of complex antigens. However, this system has limited competitiveness against the bacterial production of purified antigens. Thus, we have shown that the L. infantum K39 antigen's fusion to a hydrophobin allows its production for diagnostic tests without the need for intensive purification. The sera of naturally infected dogs specifically detect the semi-purified rK39-HFBI protein. The test validation against a panel of 158 clinical samples demonstrates the platform's viability, resulting in sensitivity and specificity of 90.7 and 97.5%, respectively. Thus, the use of semi-purified antigens fused to hydrophobins can become the standard platform for large-scale antigens production to expand diagnostic tests for other human and veterinary diseases worldwide.
ABSTRACT
OBJECTIVE: To perform a comparative analysis of saliva protein profile of patients with early childhood caries at different levels of severity and caries-free individuals. MATERIALS AND METHODS: Stimulated saliva samples were collected from 126 children (2-6 years old), classified according to the ICDAS II, and divided into 3 groups (n = 42): caries-free (CF), enamel caries (EC), and dentine caries (DC). Samples were digested and analyzed by nanoUPLC coupled with a mass spectrometry. Data analyses were conducted with Progenesis QI for Proteomics Software v2.0. Gene Ontology (GO) terms and protein-protein interaction analysis were obtained. RESULTS: A total of 306 proteins (≈6 peptides) were identified. Among them, 122 were differentially expressed in comparisons among children with different caries status. Out of the 122 proteins, the proteins E2AK4 and SH3L2 were exclusively present in groups CF and EC, respectively, and 8 proteins (HAUS4, CAH1, IL36A, IL36G, AIMP1, KLHL8, KLH13, and SAA1) were considered caries-related proteins when compared to caries-free children; they were up-regulated proteins in the caries groups (EC and DC). CONCLUSION: The identification of exclusive proteins for caries-free or carious-related conditions may help in understanding the mechanisms of caries and predicting risk as well as advancing in caries control or anti-caries approaches.
ABSTRACT
Dengue is a viral disease that represents a significant threat to global public health since billions of people are now at risk of infection by this mosquito-borne virus. The implementation of extensive screening tests is indispensable to control this disease, and the Dengue virus non-structural protein 1 (NS1) is a promising antigen for the serological diagnosis of dengue fever. Plant-based systems can be a safe and cost-effective alternative for the production of dengue virus antigens. In this work, two strategies to produce the dengue NS1 protein in Nicotiana benthamiana leaves were evaluated: Targeting NS1 to five different subcellular compartments to assess the best subcellular organelle for the expression and accumulation of NS1, and the addition of elastin-like polypeptide (ELP) or hydrophobin (HFBI) fusion tags to NS1. The transiently expressed proteins in N. benthamiana were quantified by Western blot analysis. The NS1 fused to ELP and targeted to the ER (NS1 ELP-ER) showed the highest yield (445 mg/kg), approximately a forty-fold increase in accumulation levels compared to the non-fused protein (NS1-ER), representing the first example of transient expression of DENV NS1 in plant. We also demonstrated that NS1 ELP-ER was successfully recognized by a monoclonal anti-dengue virus NS1 glycoprotein antibody, and by sera from dengue virus-infected patients. Interestingly, it was found that transient production of NS1-ER and NS1 ELP-ER using vacuum infiltration of whole plants, which is easier to scale up, rather than syringe infiltration of leaves, greatly improved the accumulation of NS1 proteins. The generated plant made NS1, even without extensive purification, showed potential to be used for the development of the NS1 diagnostic tests in resource-limited areas where dengue is endemic.
ABSTRACT
Neem fruit (Azadirachta indica A. Juss.) are popularly used to treat infections, diarrhea, fever, bronchitis, skin diseases, infected burns and hypertension. Although the antinociceptive and anti-inflammatory potential of A. indica has already been investigated in experimental models of pain and inflammation in mice, the current research is the first to report the evaluation of the capacity of A. indica fruit ethanolic extract (EtFrNeem) in acute pain attenuation using the adult zebrafish (Danio rerio) as an alternative model to the use in rodents. EtFrNeem was submitted to antioxidant action, preliminary chemical prospecting, FT-IR and determination of phenol and flavonoid content tests. Subsequently, EtFrNeem was tested for acute nociception and abdominal inflammation, locomotor activity, and acute toxicity in adult zebrafish. Possible neuromodulation mechanisms were also evaluated. EtFrNeem showed low antioxidant activity, but was shown to be rich in flavonoids. EtFrNeem showed no anti-inflammatory action, did not alter the locomotor system, and it was not toxic. However, EtFrNeem significantly reduced the nociceptive behavior induced by formalin, glutamate and acidic saline, when compared to the control group. These effects of EtFrNeem were significantly similar to those of morphine, used as a positive control. The antinociceptive effect of EtFrNeem was inhibited by naloxone, ketamine and amiloride. EtFrNeem has the pharmacological potential for acute pain treatment and this effect is modulated by the opioid system, NMDA receptors and ASICs channels. These results lead us to studies of isolation and characterization of EtFrNeem bioactive principles, using adult zebrafish as an experimental model.
Subject(s)
Analgesics, Opioid/pharmacology , Analgesics/pharmacology , Azadirachta/chemistry , Excitatory Amino Acid Agents/pharmacology , Fruit/chemistry , Meliaceae/chemistry , Plant Extracts/pharmacology , Acid Sensing Ion Channels/metabolism , Animals , Antioxidants/metabolism , Disease Models, Animal , Ethanol , Flavonoids/pharmacology , Locomotion/drug effects , Morphine/pharmacology , Pain/drug therapy , Pain/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , ZebrafishABSTRACT
The aim of this study was to evaluate the activity of essential oil from Tagetes erecta against 3rd instars of Aedes aegypti and to determine the amounts of larvicidal thiophenes in all plant tissues. The oil obtained by steam distillation and analyzed by gas chromatography/mass spectrometry showed 14 compounds. The main compounds were piperitone (45.72%), D-limonene (9.67%), and piperitenone (5.89%). The essential oil was active against larvae of Ae. aegypti, with LC50 of 79.78 microg/ml and LC90 of 100.84 microg/ml. The larvicidal thiophene contents were higher in the roots and flowers as demonstrated by high-performance liquid chromatography analysis. Thus, T. erecta constitutes a good source of varied compounds showing larvicidal activity against Ae. aegypti.
Subject(s)
Aedes , Mosquito Control/methods , Oils, Volatile/pharmacology , Aedes/drug effects , Animals , Cyclohexane Monoterpenes , Cyclohexenes , Gas Chromatography-Mass Spectrometry , Insecticides , Larva/drug effects , Lethal Dose 50 , Limonene , Monoterpenes , Plant Oils , Tagetes/chemistry , TerpenesABSTRACT
The lysozyme enzyme was immobilized on vitreous surface (fragments with diameters of 0.3 and 1.0 mm) for remediation of the microorganism Escherichia coli JM 109 into fresh water and saline solutions with 0.9 percent NaCl (w/v). Characterization of enzymatic film was carried out by infrared spectroscopy and atomic force microscopy techniques. Bactericide activity of the enzyme was evaluated by spectrophotometric analysis. It was verified that the enzymatic film was strongly coupled with the vitreous surface. The topographic analysis demonstrated that the deposited film was uniform and homogeneous. It was observed bactericide activity of film deposited on vitreous surface with 0.3 mm in fresh and saline solutions. This fact was not verified to vitreous fragments with 1.0 mm of diameter.