Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Biochem Pharmacol ; 225: 116299, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763260

ABSTRACT

GPCRs heteromerize both in CNS and non-CNS regions. The cell uses receptor heteromerization to modulate receptor functionality and to provide fine tuning of receptor signaling. In order for pharmacologists to explore these mechanisms for therapeutic purposes, quantitative receptor models are needed. We have developed a time-dependent model of the binding kinetics and functionality of a preformed heterodimeric receptor involving two drugs. Two cases were considered: both or only one of the drugs are in excess with respect to the total concentration of the receptor. The latter case can be applied to those situations in which a drug causes unwanted side effects that need to be reduced by decreasing its concentration. The required efficacy can be maintained by the allosteric effects mutually exerted by the two drugs in the two-drug combination system. We discuss this concept assuming that the drug causing unwanted side effects is an opioid and that analgesia is the therapeutic effect. As additional points, allosteric modulation by endogenous compounds and synthetic bivalent ligands was included in the study. Receptor heteromerization offers a mechanistic understanding and quantification of the pharmacological effects elicited by combinations of two drugs at different doses and with different efficacies and cooperativity effects, thus providing a conceptual framework for drug combination therapy.


Subject(s)
Protein Binding , Ligands , Kinetics , Protein Binding/physiology , Receptors, G-Protein-Coupled/metabolism , Humans , Models, Biological , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Time Factors , Protein Multimerization
2.
Biol Cybern ; 118(1-2): 83-110, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38597964

ABSTRACT

Mathematical modeling of neuronal dynamics has experienced a fast growth in the last decades thanks to the biophysical formalism introduced by Hodgkin and Huxley in the 1950s. Other types of models (for instance, integrate and fire models), although less realistic, have also contributed to understand neuronal dynamics. However, there is still a vast volume of data that have not been associated with a mathematical model, mainly because data are acquired more rapidly than they can be analyzed or because it is difficult to analyze (for instance, if the number of ionic channels involved is huge). Therefore, developing new methodologies to obtain mathematical or computational models associated with data (even without previous knowledge of the source) can be helpful to make future predictions. Here, we explore the capability of a wavelet neural network to identify neuronal (single-cell) dynamics. We present an optimized computational scheme that trains the ANN with biologically plausible input currents. We obtain successful identification for data generated from four different neuron models when using all variables as inputs of the network. We also show that the empiric model obtained is able to generalize and predict the neuronal dynamics generated by variable input currents different from those used to train the artificial network. In the more realistic situation of using only the voltage and the injected current as input data to train the network, we lose predictive ability but, for low-dimensional models, the results are still satisfactory. We understand our contribution as a first step toward obtaining empiric models from experimental voltage traces.


Subject(s)
Models, Neurological , Neural Networks, Computer , Neurons , Neurons/physiology , Animals , Humans , Action Potentials/physiology , Computer Simulation
3.
Drug Discov Today ; 28(2): 103441, 2023 02.
Article in English | MEDLINE | ID: mdl-36372329

ABSTRACT

Allosteric modulators are of prime interest in drug discovery. These drugs regulate the binding and function of endogenous ligands, with some advantages over orthosteric ligands. A typical pharmacological parameter in allosteric modulation is binding cooperativity. This property can yield unexpected but illuminating results when decomposed into its kinetic parameters. Using two reference models (the allosteric ternary complex receptor model and a heterodimer receptor model), a relationship has been derived for the cooperativity rate constant parameters. This relationship allows many combinations of the cooperativity kinetic parameters for a single binding cooperativity value obtained under equilibrium conditions. This assessment may help understand striking experimental results involving allosteric modulation and suggest further investigations in the field.


Subject(s)
Ligands , Allosteric Regulation , Allosteric Site
5.
Nat Commun ; 12(1): 4415, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34285228

ABSTRACT

Complex dynamical fluctuations, from intracellular noise, brain dynamics or computer traffic display bursting dynamics consistent with a critical state between order and disorder. Living close to the critical point has adaptive advantages and it has been conjectured that evolution could select these critical states. Is this the case of living cells? A system can poise itself close to the critical point by means of the so-called self-organized criticality (SOC). In this paper we present an engineered gene network displaying SOC behaviour. This is achieved by exploiting the saturation of the proteolytic degradation machinery in E. coli cells by means of a negative feedback loop that reduces congestion. Our critical motif is built from a two-gene circuit, where SOC can be successfully implemented. The potential implications for both cellular dynamics and behaviour are discussed.


Subject(s)
Cell Engineering/methods , Escherichia coli Proteins/metabolism , Escherichia coli/growth & development , Gene Expression Regulation, Bacterial , Genetic Engineering , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Feedback, Physiological , Models, Genetic , Proteolysis , Single-Cell Analysis
6.
PLoS Comput Biol ; 17(6): e1008408, 2021 06.
Article in English | MEDLINE | ID: mdl-34153035

ABSTRACT

Tumour cell heterogeneity is a major barrier for efficient design of targeted anti-cancer therapies. A diverse distribution of phenotypically distinct tumour-cell subpopulations prior to drug treatment predisposes to non-uniform responses, leading to the elimination of sensitive cancer cells whilst leaving resistant subpopulations unharmed. Few strategies have been proposed for quantifying the variability associated to individual cancer-cell heterogeneity and minimizing its undesirable impact on clinical outcomes. Here, we report a computational approach that allows the rational design of combinatorial therapies involving epigenetic drugs against chromatin modifiers. We have formulated a stochastic model of a bivalent transcription factor that allows us to characterise three different qualitative behaviours, namely: bistable, high- and low-gene expression. Comparison between analytical results and experimental data determined that the so-called bistable and high-gene expression behaviours can be identified with undifferentiated and differentiated cell types, respectively. Since undifferentiated cells with an aberrant self-renewing potential might exhibit a cancer/metastasis-initiating phenotype, we analysed the efficiency of combining epigenetic drugs against the background of heterogeneity within the bistable sub-ensemble. Whereas single-targeted approaches mostly failed to circumvent the therapeutic problems represented by tumour heterogeneity, combinatorial strategies fared much better. Specifically, the more successful combinations were predicted to involve modulators of the histone H3K4 and H3K27 demethylases KDM5 and KDM6A/UTX. Those strategies involving the H3K4 and H3K27 methyltransferases MLL2 and EZH2, however, were predicted to be less effective. Our theoretical framework provides a coherent basis for the development of an in silico platform capable of identifying the epigenetic drugs combinations best-suited to therapeutically manage non-uniform responses of heterogenous cancer cell populations.


Subject(s)
Antineoplastic Agents/therapeutic use , Chromatin/drug effects , Epigenesis, Genetic/drug effects , Neoplasms/drug therapy , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Computer Simulation , Drug Therapy, Combination , Humans
7.
J Math Biol ; 80(7): 2075-2107, 2020 06.
Article in English | MEDLINE | ID: mdl-32266428

ABSTRACT

In Neuroscience, mathematical modelling involving multiple spatial and temporal scales can unveil complex oscillatory activity such as excitable responses to an input current, subthreshold oscillations, spiking or bursting. While the number of slow and fast variables and the geometry of the system determine the type of the complex oscillations, canard structures define boundaries between them. In this study, we use geometric singular perturbation theory to identify and characterise boundaries between different dynamical regimes in multiple-timescale firing rate models of the developing spinal cord. These rate models are either three or four dimensional with state variables chosen within an overall group of two slow and two fast variables. The fast subsystem corresponds to a recurrent excitatory network with fast activity-dependent synaptic depression, and the slow variables represent the cell firing threshold and slow activity-dependent synaptic depression, respectively. We start by demonstrating canard-induced bursting and mixed-mode oscillations in two different three-dimensional rate models. Then, in the full four-dimensional model we show that a canard-mediated slow passage creates dynamics that combine these complex oscillations and give rise to mixed-mode bursting oscillations (MMBOs). We unveil complicated isolas along which MMBOs exist in parameter space. The profile of solutions along each isola undergoes canard-mediated transitions between the sub-threshold regime and the bursting regime; these explosive transitions change the number of oscillations in each regime. Finally, we relate the MMBO dynamics to experimental recordings and discuss their effects on the silent phases of bursting patterns as well as their potential role in creating subthreshold fluctuations that are often interpreted as noise. The mathematical framework used in this paper is relevant for modelling multiple timescale dynamics in excitable systems.


Subject(s)
Models, Neurological , Nerve Net/physiology , Action Potentials/physiology , Animals , Chick Embryo , Computer Simulation , Mathematical Concepts , Nerve Net/embryology , Spatio-Temporal Analysis , Spinal Cord/embryology , Spinal Cord/physiology , Stochastic Processes
8.
Bull Math Biol ; 81(10): 4124-4143, 2019 10.
Article in English | MEDLINE | ID: mdl-31313084

ABSTRACT

The conductance-based refractory density (CBRD) approach is a parsimonious mathematical-computational framework for modelling interacting populations of regular spiking neurons, which, however, has not been yet extended for a population of bursting neurons. The canonical CBRD method allows to describe the firing activity of a statistical ensemble of uncoupled Hodgkin-Huxley-like neurons (differentiated by noise) and has demonstrated its validity against experimental data. The present manuscript generalises the CBRD for a population of bursting neurons; however, in this pilot computational study, we consider the simplest setting in which each individual neuron is governed by a piecewise linear bursting dynamics. The resulting population model makes use of slow-fast analysis, which leads to a novel methodology that combines CBRD with the theory of multiple timescale dynamics. The main prospect is that it opens novel avenues for mathematical explorations, as well as, the derivation of more sophisticated population activity from Hodgkin-Huxley-like bursting neurons, which will allow to capture the activity of synchronised bursting activity in hyper-excitable brain states (e.g. onset of epilepsy).


Subject(s)
Action Potentials/physiology , Models, Neurological , Nerve Net/cytology , Nerve Net/physiology , Neurons/cytology , Neurons/physiology , Animals , Biophysical Phenomena , Brain/cytology , Brain/physiology , Cell Count , Computer Simulation , Electrophysiological Phenomena , Epilepsy/pathology , Epilepsy/physiopathology , Humans , Linear Models , Mathematical Concepts , Potassium/metabolism , Spatio-Temporal Analysis
9.
Chaos ; 28(10): 103111, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30384643

ABSTRACT

We consider heteroclinic attractor networks motivated by models of competition between neural populations during binocular rivalry. We show that gamma distributions of dominance times observed experimentally in binocular rivalry and other forms of bistable perception, commonly explained by means of noise in the models, can be achieved with quasiperiodic perturbations. For this purpose, we present a methodology based on the separatrix map to model the dynamics close to heteroclinic networks with quasiperiodic perturbations. Our methodology unifies two different approaches, one based on Melnikov integrals and the other one based on variational equations. We apply it to two models: first, to the Duffing equation, which comes from the perturbation of a Hamiltonian system and, second, to a heteroclinic attractor network for binocular rivalry, for which we develop a suitable method based on Melnikov integrals for non-Hamiltonian systems. In both models, the perturbed system shows chaotic behavior, while dominance times achieve good agreement with gamma distributions. Moreover, the separatrix map provides a new (discrete) model for bistable perception which, in addition, replaces the numerical integration of time-continuous models and, consequently, reduces the computational cost and avoids numerical instabilities.

10.
Front Comput Neurosci ; 11: 69, 2017.
Article in English | MEDLINE | ID: mdl-28790909

ABSTRACT

Subthreshold fluctuations in neuronal membrane potential traces contain nonlinear components, and employing nonlinear models might improve the statistical inference. We propose a new strategy to estimate synaptic conductances, which has been tested using in silico data and applied to in vivo recordings. The model is constructed to capture the nonlinearities caused by subthreshold activated currents, and the estimation procedure can discern between excitatory and inhibitory conductances using only one membrane potential trace. More precisely, we perform second order approximations of biophysical models to capture the subthreshold nonlinearities, resulting in quadratic integrate-and-fire models, and apply approximate maximum likelihood estimation where we only suppose that conductances are stationary in a 50-100 ms time window. The results show an improvement compared to existent procedures for the models tested here.

11.
J Theor Biol ; 387: 23-30, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26431772

ABSTRACT

We investigate the dynamics and transitions to extinction of hypercycles governed by periodic orbits. For a large enough number of hypercycle species (n>4) the existence of a stable periodic orbit has been previously described, showing an apparent coincidence of the vanishing of the periodic orbit with the value of the replication quality factor Q where two unstable (non-zero) equilibrium points collide (named QSS). It has also been reported that, for values below QSS, the system goes to extinction. In this paper, we use a suitable Poincaré map associated to the hypercycle system to analyze the dynamics in the bistability regime, where both oscillatory dynamics and extinction are possible. The stable periodic orbit is identified, together with an unstable periodic orbit. In particular, we are able to unveil the vanishing mechanism of the oscillatory dynamics: a saddle-node bifurcation of periodic orbits as the replication quality factor, Q, undergoes a critical fidelity threshold, QPO. The identified bifurcation involves the asymptotic extinction of all hypercycle members, since the attractor placed at the origin becomes globally stable for values Q

Subject(s)
Models, Biological , Periodicity , Mutation
12.
J Comput Neurosci ; 39(3): 271-87, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26432075

ABSTRACT

We study the influence of subthreshold activity in the estimation of synaptic conductances. It is known that differences between actual conductances and the estimated ones using linear regression methods can be huge in spiking regimes, so caution has been taken to remove spiking activity from experimental data before proceeding to linear estimation. However, not much attention has been paid to the influence of ionic currents active in the non-spiking regime where such linear methods are still profusely used. In this paper, we use conductance-based models to test this influence using several representative mechanisms to induce ionic subthreshold activity. In all the cases, we show that the currents activated during subthreshold activity can lead to significant errors when estimating synaptic conductance linearly. Thus, our results add a new warning message when extracting conductance traces from intracellular recordings and the conclusions concerning neuronal activity that can be drawn from them. Additionally, we present, as a proof of concept, an alternative method that takes into account the main nonlinear effects of specific ionic subthreshold currents. This method, based on the quadratization of the subthreshold dynamics, allows us to reduce the relative errors of the estimated conductances by more than one order of magnitude. In experimental conditions, under appropriate fitting to canonical models, it could be useful to obtain better estimations as well even under the presence of noise.


Subject(s)
Calcium Channels/physiology , Computer Simulation , Connectome/methods , Ion Channel Gating , Models, Neurological , Nerve Tissue Proteins/physiology , Neural Conduction/physiology , Potassium Channels/physiology , Sodium Channels/physiology , Synaptic Transmission/physiology , Action Potentials/physiology , Animals , Cations/metabolism , Humans , Linear Models , Pyramidal Cells/physiology
13.
J Math Neurosci ; 3(1): 13, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23945295

ABSTRACT

The phase response curve (PRC) is a powerful tool to study the effect of a perturbation on the phase of an oscillator, assuming that all the dynamics can be explained by the phase variable. However, factors like the rate of convergence to the oscillator, strong forcing or high stimulation frequency may invalidate the above assumption and raise the question of how is the phase variation away from an attractor. The concept of isochrons turns out to be crucial to answer this question; from it, we have built up Phase Response Functions (PRF) and, in the present paper, we complete the extension of advancement functions to the transient states by defining the Amplitude Response Function (ARF) to control changes in the transversal variables. Based on the knowledge of both the PRF and the ARF, we study the case of a pulse-train stimulus, and compare the predictions given by the PRC-approach (a 1D map) to those given by the PRF-ARF-approach (a 2D map); we observe differences up to two orders of magnitude in favor of the 2D predictions, especially when the stimulation frequency is high or the strength of the stimulus is large. We also explore the role of hyperbolicity of the limit cycle as well as geometric aspects of the isochrons. Summing up, we aim at enlightening the contribution of transient effects in predicting the phase response and showing the limits of the phase reduction approach to prevent from falling into wrong predictions in synchronization problems. LIST OF ABBREVIATIONS: PRC phase response curve, phase resetting curve.PRF phase response function.ARF amplitude response function.

14.
Article in English | MEDLINE | ID: mdl-23518509

ABSTRACT

We report that multi-stable perception operates in a consistent, dynamical regime, balancing the conflicting goals of stability and sensitivity. When a multi-stable visual display is viewed continuously, its phenomenal appearance reverses spontaneously at irregular intervals. We characterized the perceptual dynamics of individual observers in terms of four statistical measures: the distribution of dominance times (mean and variance) and the novel, subtle dependence on prior history (correlation and time-constant). The dynamics of multi-stable perception is known to reflect several stabilizing and destabilizing factors. Phenomenologically, its main aspects are captured by a simplistic computational model with competition, adaptation, and noise. We identified small parameter volumes (~3% of the possible volume) in which the model reproduced both dominance distribution and history-dependence of each observer. For 21 of 24 data sets, the identified volumes clustered tightly (~15% of the possible volume), revealing a consistent "operating regime" of multi-stable perception. The "operating regime" turned out to be marginally stable or, equivalently, near the brink of an oscillatory instability. The chance probability of the observed clustering was <0.02. To understand the functional significance of this empirical "operating regime," we compared it to the theoretical "sweet spot" of the model. We computed this "sweet spot" as the intersection of the parameter volumes in which the model produced stable perceptual outcomes and in which it was sensitive to input modulations. Remarkably, the empirical "operating regime" proved to be largely coextensive with the theoretical "sweet spot." This demonstrated that perceptual dynamics was not merely consistent but also functionally optimized (in that it balances stability with sensitivity). Our results imply that multi-stable perception is not a laboratory curiosity, but reflects a functional optimization of perceptual dynamics for visual inference.

15.
Article in English | MEDLINE | ID: mdl-22973221

ABSTRACT

Short-term synaptic depression (STD) is a form of synaptic plasticity that has a large impact on network computations. Experimental results suggest that STD is modulated by cortical activity, decreasing with activity in the network and increasing during silent states. Here, we explored different activity-modulation protocols in a biophysical network model for which the model displayed less STD when the network was active than when it was silent, in agreement with experimental results. Furthermore, we studied how trains of synaptic potentials had lesser decay during periods of activity (UP states) than during silent periods (DOWN states), providing new experimental predictions. We next tackled the inverse question of what is the impact of modifying STD parameters on the emergent activity of the network, a question difficult to answer experimentally. We found that synaptic depression of cortical connections had a critical role to determine the regime of rhythmic cortical activity. While low STD resulted in an emergent rhythmic activity with short UP states and long DOWN states, increasing STD resulted in longer and more frequent UP states interleaved with short silent periods. A still higher synaptic depression set the network into a non-oscillatory firing regime where DOWN states no longer occurred. The speed of propagation of UP states along the network was not found to be modulated by STD during the oscillatory regime; it remained relatively stable over a range of values of STD. Overall, we found that the mutual interactions between synaptic depression and ongoing network activity are critical to determine the mechanisms that modulate cortical emergent patterns.

16.
J Physiol Paris ; 100(1-3): 31-42, 2006.
Article in English | MEDLINE | ID: mdl-17084599

ABSTRACT

In order to identify and understand mechanistically the cortical circuitry of sensory information processing estimates are needed of synaptic input fields that drive neurons. From intracellular in vivo recordings one would like to estimate net synaptic conductance time courses for excitation and inhibition, g(E)(t) and g(I)(t), during time-varying stimulus presentations. However, the intrinsic conductance transients associated with neuronal spiking can confound such estimates, and thereby jeopardize functional interpretations. Here, using a conductance-based pyramidal neuron model we illustrate errors in estimates when the influence of spike-generating conductances are not reduced or avoided. A typical estimation procedure involves approximating the current-voltage relation at each time point during repeated stimuli. The repeated presentations are done in a few sets, each with a different steady bias current. From the trial-averaged smoothed membrane potential one estimates total membrane conductance and then dissects out estimates for g(E)(t) and g(I)(t). Simulations show that estimates obtained during phases without spikes are good but those obtained from phases with spiking should be viewed with skeptism. For the simulations, we consider two different synaptic input scenarios, each corresponding to computational network models of orientation tuning in visual cortex. One input scenario mimics a push-pull arrangement for g(E)(t) and g(I)(t) and idealized as specified smooth time courses. The other is taken directly from a large-scale network simulation of stochastically spiking neurons in a slab of cortex with recurrent excitation and inhibition. For both, we show that spike-generating conductances cause serious errors in the estimates of g(E) and g(I). In some phases for the push-pull examples even the polarity of g(I) is mis-estimated, indicating significant increase when g(I) is actually decreased. Our primary message is to be cautious about forming interpretations based on estimates developed during spiking phases.


Subject(s)
Models, Neurological , Pyramidal Cells/physiology , Synapses/physiology , Synaptic Transmission/physiology , Adaptation, Physiological , Animals , Computer Simulation , Humans , Linear Models , Neural Inhibition/physiology , Orientation , Pyramidal Cells/cytology , Stochastic Processes , Time Factors , Visual Cortex/cytology
SELECTION OF CITATIONS
SEARCH DETAIL