Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Cell Rep Med ; 3(1): 100492, 2022 01 18.
Article in English | MEDLINE | ID: mdl-35106508

ABSTRACT

The Columbia Cancer Target Discovery and Development (CTD2) Center is developing PANACEA, a resource comprising dose-responses and RNA sequencing (RNA-seq) profiles of 25 cell lines perturbed with ∼400 clinical oncology drugs, to study a tumor-specific drug mechanism of action. Here, this resource serves as the basis for a DREAM Challenge assessing the accuracy and sensitivity of computational algorithms for de novo drug polypharmacology predictions. Dose-response and perturbational profiles for 32 kinase inhibitors are provided to 21 teams who are blind to the identity of the compounds. The teams are asked to predict high-affinity binding targets of each compound among ∼1,300 targets cataloged in DrugBank. The best performing methods leverage gene expression profile similarity analysis as well as deep-learning methodologies trained on individual datasets. This study lays the foundation for future integrative analyses of pharmacogenomic data, reconciliation of polypharmacology effects in different tumor contexts, and insights into network-based assessments of drug mechanisms of action.


Subject(s)
Neoplasms/drug therapy , Polypharmacology , Algorithms , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Neural Networks, Computer , Protein Kinases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription, Genetic
2.
Nat Commun ; 12(1): 3932, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34168145

ABSTRACT

Chemical descriptors encode the physicochemical and structural properties of small molecules, and they are at the core of chemoinformatics. The broad release of bioactivity data has prompted enriched representations of compounds, reaching beyond chemical structures and capturing their known biological properties. Unfortunately, bioactivity descriptors are not available for most small molecules, which limits their applicability to a few thousand well characterized compounds. Here we present a collection of deep neural networks able to infer bioactivity signatures for any compound of interest, even when little or no experimental information is available for them. Our signaturizers relate to bioactivities of 25 different types (including target profiles, cellular response and clinical outcomes) and can be used as drop-in replacements for chemical descriptors in day-to-day chemoinformatics tasks. Indeed, we illustrate how inferred bioactivity signatures are useful to navigate the chemical space in a biologically relevant manner, unveiling higher-order organization in natural product collections, and to enrich mostly uncharacterized chemical libraries for activity against the drug-orphan target Snail1. Moreover, we implement a battery of signature-activity relationship (SigAR) models and show a substantial improvement in performance, with respect to chemistry-based classifiers, across a series of biophysics and physiology activity prediction benchmarks.


Subject(s)
Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Structure-Activity Relationship , Cell Line, Tumor , Databases, Pharmaceutical , Drug Evaluation, Preclinical/methods , Humans , Snail Family Transcription Factors/antagonists & inhibitors , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism
3.
J Chem Inf Model ; 60(12): 5730-5734, 2020 12 28.
Article in English | MEDLINE | ID: mdl-32672454

ABSTRACT

Until a vaccine becomes available, the current repertoire of drugs is our only therapeutic asset to fight the SARS-CoV-2 outbreak. Indeed, emergency clinical trials have been launched to assess the effectiveness of many marketed drugs, tackling the decrease of viral load through several mechanisms. Here, we present an online resource, based on small-molecule bioactivity signatures and natural language processing, to expand the portfolio of compounds with potential to treat COVID-19. By comparing the set of drugs reported to be potentially active against SARS-CoV-2 to a universe of 1 million bioactive molecules, we identify compounds that display analogous chemical and functional features to the current COVID-19 candidates. Searches can be filtered by level of evidence and mechanism of action, and results can be restricted to drug molecules or include the much broader space of bioactive compounds. Moreover, we allow users to contribute COVID-19 drug candidates, which are automatically incorporated to the pipeline once per day. The computational platform, as well as the source code, is available at https://sbnb.irbbarcelona.org/covid19.


Subject(s)
Antiviral Agents/chemistry , COVID-19 Drug Treatment , Drug Repositioning/methods , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Computer Simulation , Drug Design , Humans , Models, Molecular , Molecular Structure , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
4.
Nat Biotechnol ; 38(9): 1098, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32440008

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Nat Biotechnol ; 38(9): 1087-1096, 2020 09.
Article in English | MEDLINE | ID: mdl-32440005

ABSTRACT

Small molecules are usually compared by their chemical structure, but there is no unified analytic framework for representing and comparing their biological activity. We present the Chemical Checker (CC), which provides processed, harmonized and integrated bioactivity data on ~800,000 small molecules. The CC divides data into five levels of increasing complexity, from the chemical properties of compounds to their clinical outcomes. In between, it includes targets, off-targets, networks and cell-level information, such as omics data, growth inhibition and morphology. Bioactivity data are expressed in a vector format, extending the concept of chemical similarity to similarity between bioactivity signatures. We show how CC signatures can aid drug discovery tasks, including target identification and library characterization. We also demonstrate the discovery of compounds that reverse and mimic biological signatures of disease models and genetic perturbations in cases that could not be addressed using chemical information alone. Overall, the CC signatures facilitate the conversion of bioactivity data to a format that is readily amenable to machine learning methods.


Subject(s)
Pharmaceutical Preparations/metabolism , Small Molecule Libraries/metabolism , Biological Products/chemistry , Biological Products/metabolism , Biological Products/therapeutic use , Biomarkers, Pharmacological/metabolism , Databases, Factual , Drug Discovery , Drug Therapy , Humans , Pharmaceutical Preparations/chemistry , Small Molecule Libraries/chemistry , Small Molecule Libraries/therapeutic use
6.
Genome Med ; 10(1): 61, 2018 08 03.
Article in English | MEDLINE | ID: mdl-30071882

ABSTRACT

BACKGROUND: The widespread incorporation of next-generation sequencing into clinical oncology has yielded an unprecedented amount of molecular data from thousands of patients. A main current challenge is to find out reliable ways to extrapolate results from one group of patients to another and to bring rationale to individual cases in the light of what is known from the cohorts. RESULTS: We present OncoGenomic Landscapes, a framework to analyze and display thousands of cancer genomic profiles in a 2D space. Our tool allows users to rapidly assess the heterogeneity of large cohorts, enabling the comparison to other groups of patients, and using driver genes as landmarks to aid in the interpretation of the landscapes. In our web-server, we also offer the possibility of mapping new samples and cohorts onto 22 predefined landscapes related to cancer cell line panels, organoids, patient-derived xenografts, and clinical tumor samples. CONCLUSIONS: Contextualizing individual subjects in a more general landscape of human cancer is a valuable aid for basic researchers and clinical oncologists trying to identify treatment opportunities, maybe yet unapproved, for patients that ran out of standard therapeutic options. The web-server can be accessed at https://oglandscapes.irbbarcelona.org /.


Subject(s)
Biomarkers, Tumor/genetics , Genomics/methods , Neoplasms/genetics , Software , Databases, Genetic , Genome, Human , Humans , Polymorphism, Genetic
7.
Methods ; 132: 19-25, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28941788

ABSTRACT

Biological processes often manifest themselves as coordinated changes across modules, i.e., sets of interacting genes. Commonly, the high dimensionality of genome-scale data prevents the visual identification of such modules, and straightforward computational search through a set of known pathways is a limited approach. Therefore, tools for the data-driven, computational, identification of modules in gene interaction networks have become popular components of visualization and visual analytics workflows. However, many such tools are known to result in modules that are large, and therefore hard to interpret biologically. Here, we show that the empirically known tendency towards large modules can be attributed to a statistical bias present in many module identification tools, and discuss possible remedies from a mathematical perspective. In the current absence of a straightforward practical solution, we outline our view of best practices for the use of the existing tools.


Subject(s)
Computational Biology/methods , Algorithms , Bias , Gene Expression Profiling , Gene Regulatory Networks , Humans
8.
Nucleic Acids Res ; 45(W1): W195-W200, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28453651

ABSTRACT

The massive molecular profiling of thousands of cancer patients has led to the identification of many tumor type specific driver genes. However, only a few (or none) of them are present in each individual tumor and, to enable precision oncology, we need to interpret the alterations found in a single patient. Cancer PanorOmics (http://panoromics.irbbarcelona.org) is a web-based resource to contextualize genomic variations detected in a personal cancer genome within the body of clinical and scientific evidence available for 26 tumor types, offering complementary cohort- and patient-centric views. Additionally, it explores the cellular environment of mutations by mapping them on the human interactome and providing quasi-atomic structural details, whenever available. This 'PanorOmic' molecular view of individual tumors, together with the appropriate genetic counselling and medical advice, should contribute to the identification of actionable alterations ultimately guiding the clinical decision-making process.


Subject(s)
Genes, Neoplasm , Neoplasms/genetics , Software , Genome, Human , High-Throughput Nucleotide Sequencing , Humans , Internet , Kaplan-Meier Estimate , Mutation , Neoplasm Proteins/chemistry , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Neoplasms/mortality , Protein Interaction Mapping
9.
Bioinformatics ; 33(5): 701-709, 2017 03 01.
Article in English | MEDLINE | ID: mdl-27797778

ABSTRACT

Motivation: Most computational approaches for the analysis of omics data in the context of interaction networks have very long running times, provide single or partial, often heuristic, solutions and/or contain user-tuneable parameters. Results: We introduce local enrichment analysis (LEAN) for the identification of dysregulated subnetworks from genome-wide omics datasets. By substituting the common subnetwork model with a simpler local subnetwork model, LEAN allows exact, parameter-free, efficient and exhaustive identification of local subnetworks that are statistically dysregulated, and directly implicates single genes for follow-up experiments.Evaluation on simulated and biological data suggests that LEAN generally detects dysregulated subnetworks better, and reflects biological similarity between experiments more clearly than standard approaches. A strong signal for the local subnetwork around Von Willebrand Factor (VWF), a gene which showed no change on the mRNA level, was identified by LEAN in transcriptome data in the context of the genetic disease Cerebral Cavernous Malformations (CCM). This signal was experimentally found to correspond to an unexpected strong cellular effect on the VWF protein. LEAN can be used to pinpoint statistically significant local subnetworks in any genome-scale dataset. Availability and Implementation: The R-package LEANR implementing LEAN is supplied as supplementary material and available on CRAN ( https://cran.r-project.org ). Contacts: benno@pasteur.fr or tournier-lasserve@univ-paris-diderot.fr. Supplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
Computational Biology/methods , Gene Regulatory Networks , Software , Transcriptome , Animals , Hemangioma, Cavernous, Central Nervous System/genetics , Hemangioma, Cavernous, Central Nervous System/metabolism , Humans , Mice , Proteins/genetics , von Willebrand Factor/genetics
10.
Bioinformatics ; 31(9): 1499-501, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25527096

ABSTRACT

MOTIVATION: Research on methods for the inference of networks from biological data is making significant advances, but the adoption of network inference in biomedical research practice is lagging behind. Here, we present Cyni, an open-source 'fill-in-the-algorithm' framework that provides common network inference functionality and user interface elements. Cyni allows the rapid transformation of Java-based network inference prototypes into apps of the popular open-source Cytoscape network analysis and visualization ecosystem. Merely placing the resulting app in the Cytoscape App Store makes the method accessible to a worldwide community of biomedical researchers by mouse click. In a case study, we illustrate the transformation of an ARACNE implementation into a Cytoscape app. AVAILABILITY AND IMPLEMENTATION: Cyni, its apps, user guides, documentation and sample code are available from the Cytoscape App Store http://apps.cytoscape.org/apps/cynitoolbox CONTACT: benno.schwikowski@pasteur.fr.


Subject(s)
Gene Regulatory Networks , Software , Algorithms
11.
F1000Res ; 3: 138, 2014.
Article in English | MEDLINE | ID: mdl-25580224

ABSTRACT

As a network visualization and analysis platform, Cytoscape relies on apps to provide domain-specific features and functions. There are many resources available to support Cytoscape app development and distribution, including the Cytoscape App Store and an online "cookbook" for app developers. This article collection is another resource to help researchers find out more about relevant Cytoscape apps and to provide app developers with useful implementation tips. The collection will grow over time as new Cytoscape apps are developed and published.

SELECTION OF CITATIONS
SEARCH DETAIL
...