Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(2)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38255507

ABSTRACT

In recent years, the vitrified bond diamond grinding wheel has been applied widely in automotive, aerospace and machine tools of manufacturing industries. However, the main problems of low intensity and poor wettability between the vitrified bond and diamond abrasive limit its further application. In this study, BaO was added into the basic SiO2-B2O3-Al2O3-R2O vitrified bond system, and the impact of BaO on the wettability, thermal and mechanical behavior of vitrified bond and vitrified bond diamond composites was systematically discussed, respectively. The test indicated that when the vitrified bond containing BaO of 6 wt.% was sintered with diamond abrasive at 750 °C, a continuous barium feldspar phase transition layer between diamond abrasive and the bond was generated, which ameliorated the wet property of the bond-diamond abrasive. The contact angle varied from 59° on the blank sample to 35°, and the expansion coefficient changed from 6.24 × 10-6/K to 5.30 × 10-6/K. The Rockwell hardness and flexural strength of the vitrified bond diamond composites achieved the peaks of 117.5 MPa and 113.6 MPa, respectively, which increased by 20.2% and 16.5% compared with that of sample without the addition of BaO.

2.
Food Chem ; 439: 138142, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38081096

ABSTRACT

Spices have long been popular worldwide. Besides serving as aromatic and flavorful food and cooking ingredients, many spices exhibit notable bioactivity. Quality evaluation methods are essential for ensuring the quality and flavor of spices. However, existing methods typically focus on the content of particular components or certain aspects of bioactivity. For a systematic evaluation of spice quality, we herein propose a comprehensive "quality-quantity-activity" approach based on portable near-infrared spectrometer and membership function analysis. Cinnamomum cassia was used as a representative example to illustrate this approach. Near-infrared spectroscopy and chemometric methods were combined to predict the geographical origin, cinnamaldehyde content, ash content, antioxidant activity, and integrated membership function value. All the optimal prediction models displayed good predictive ability (correlation coefficient of prediction > 0.9, residual predictive deviation > 2.1). The proposed approach can provide a valuable reference for the rapid and comprehensive quality evaluation of spices.


Subject(s)
Cinnamomum aromaticum , Cinnamomum aromaticum/chemistry , Spices
3.
Toxicol Res (Camb) ; 12(2): 282-295, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37125334

ABSTRACT

Background: Although many studies have shown that herbs containing aristolochic acids can treat various human diseases, AAΙ in particular has been implicated as a nephrotoxic agent. Methods and results: Here, we detail the nephrotoxic effect of AAΙ via an approach that integrated 1H NMR-based metabonomics and network pharmacology. Our findings revealed renal injury in mice after the administration of AAΙ. Metabolomic data confirmed significant differences among the renal metabolic profiles of control and model groups, with significant reductions in 12 differential metabolites relevant to 23 metabolic pathways. Among them, there were seven important metabolic pathways: arginine and proline metabolism; glycine, serine, and threonine metabolism; taurine and hypotaurine metabolism; ascorbate and aldehyde glycolate metabolism; pentose and glucosinolate interconversion; alanine, aspartate, and glutamate metabolism; and glyoxylate and dicarboxylic acid metabolism. Relevant genes, namely, nitric oxide synthase 1 (NOS1), pyrroline-5-carboxylate reductase 1 (PYCR1), nitric oxide synthase 3 (NOS3) and glutamic oxaloacetic transaminase 2 (GOT2), were highlighted via network pharmacology and molecular docking techniques. Quantitative real-time PCR findings revealed that AAI administration significantly downregulated GOT2 and NOS3 and significantly upregulated NOS1 and PYCR1 expression and thus influenced the metabolism of arginine and proline. Conclusion: This work provides a meaningful insight for the mechanism of AAΙ renal injury.

4.
Lett Appl Microbiol ; 76(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37204035

ABSTRACT

Bifidobacterium adolescentis is a probiotic. This research aimed to investigate the mechanism of antibiotics led to decrease in the number of B. adolescentis. The metabolomics approach was employed to explore the effects of amoxicillin on metabolism of B.adolescentis, while MTT assay and scanning electron microscopy were applied to analyse changes in viability and morphology of bacteria. Molecular docking was used to illuminate the mechanism by which amoxicillin acts on a complex molecular network. The results showed that increasing the concentration of amoxicillin led to a gradual decrease in the number of live bacteria. Untargeted metabolomics analysis identified 11 metabolites that change as a result of amoxicillin exposure. Many of these metabolites are involved in arginine and proline metabolism, glutathione metabolism, arginine biosynthesis, cysteine, and methionine metabolism, and tyrosine and phenylalanine metabolism. Molecular docking revealed that amoxicillin had a good binding effect on the proteins AGR1, ODC1, GPX1, GSH, MAT2A, and CBS. Overall, this research provides potential targets for screening probiotic regulatory factors and lays a theoretical foundation for the elucidation of its mechanisms.


Subject(s)
Bifidobacterium adolescentis , Molecular Docking Simulation , Anti-Bacterial Agents/pharmacology , Metabolomics , Amoxicillin , Arginine
5.
J Ethnopharmacol ; 315: 116666, 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37211189

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Corydalis saxicola Bunting (CS), a traditional Chinese folk medicine, has been effectively used for treating liver disease in Zhuang nationality in South China. However, the main anti-liver fibrosis ingredients in CS are incompletely understood. AIM OF THE STUDY: To elucidate the main anti-liver fibrosis ingredients in CS and its underlying mechanism. MATERIAL AND METHODS: Firstly, spectrum-effect relationship (SER) strategy was applied to identify the major ingredients against liver fibrosis in CS. Subsequently, 1H NMR metabonomics and metagenomics sequencing techniques were used to clarify the intervention of palmatine (PAL) on liver fibrosis. Furthermore, the expression of tight junction proteins and the levels of liver inflammation factors were examined, the effect of PAL on microbiota was verified by FMT. RESULTS: The SER model revealed that PAL was the most important active ingredient in CS. 1H NMR fecal metabonomics showed that PAL could reserve the abnormal levels of gut microbial-mediated metabolites of liver fibrosis, such as isoleucine, taurine, butyrate, propionate, lactate, glucose, which mainly involved in amino acid metabolism, intestinal flora metabolism and energy metabolism. Metagenomics sequencing found that PAL could callback the abundance of s__Lactobacillus_murinus, s__Lactobacillus_reuteri, s__Lactobacillus_johnsonii, s__Lactobacillus_acidophilus and s__Faecalibaculum_rodentium to varying degree. Furthermore, the intestinal barrier function and the levels of hepatic inflammation factors were significantly ameliorated by PAL. FMT demonstrated that the therapeutic efficiency of PAL was closely associated with gut microbiota. CONCLUSION: The effects of CS on liver fibrosis were attributed in part to PAL by alleviating metabolic disorders and rebalancing gut microbiota. The SER strategy may be a useful method for the discovery of active constituents in natural plants.


Subject(s)
Corydalis , Corydalis/chemistry , Metagenomics , Metabolomics/methods , Liver Cirrhosis/drug therapy , Inflammation
6.
Appl Biochem Biotechnol ; 195(11): 6478-6494, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36870027

ABSTRACT

Globally 80% type 2 diabetes mellitus (T2DM) patients suffer nonalcoholic fatty liver disease (NAFLD). The interplay of gut microbiota and endogenous metabolic networks has not yet been reported in the setting of T2DM with NAFLD. As such, this study utilized 16S rRNA gene sequencing to assess the changes in intestinal flora and nuclear magnetic resonance spectroscopy (1H NMR) to identify potential metabolites in a T2DM with NAFLD rat model. Spearman correlation analysis was performed to explore the relationship between gut microbiota and metabolites. Results revealed that among T2DM with NAFLD rats, diversity indexes of intestinal microbiota were distinctly decreased while levels of 18 bacterial genera within the intestinal tract were significantly altered. In addition, levels of eight metabolites mainly involved in the synthesis and degradation of ketone bodies, the TCA cycle, and butanoate metabolism were altered. Correlation analysis revealed that gut bacteria such as Blautia, Ruminococcus torques group, Allobaculum, and Lachnoclostridium strongly associate with 3-hydroxybutyrate, acetone, acetoacetate, 2-oxoglutarate, citrate, creatinine, hippurate, and allantoin. Our findings can provide a basis for future development of targeted treatments.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Humans , Rats , Animals , Gastrointestinal Microbiome/genetics , Diabetes Mellitus, Type 2/metabolism , RNA, Ribosomal, 16S/genetics , Magnetic Resonance Spectroscopy
7.
ACS Appl Mater Interfaces ; 15(12): 15965-15975, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36935547

ABSTRACT

Strong electromagnetic wave reflection loss concomitant with second emission pollution limits the wide applications of electromagnetic interference (EMI) shielding textiles. Decoration of textiles by using various dielectric materials has been found efficient for the development of highly efficient EMI shielding textiles, but it is still a challenge to obtain EMI shielding composites with thin thickness. A route of interfacial engineering may offer a twist to overcome these obstacles. Here, we fabricated a Ni nanoparticle/SiC nanowhisker/carbon cloth nanoheterostructure, where SiC nanowhiskers were deposited by a simple manufacturing method, namely, laser chemical vapor deposition (LCVD), directly grown on carbon cloth. Through directly constructing a Ni/SiC interface, we find that the formation of Schottky contact can influence the interfacial polarization associated with the generation of dipole electric fields, leading to an enhancement of dielectric loss. A striking feature of this interfacial engineering strategy is able to enhance the absorption of the incident electromagnetic wave while suppressing the reflection. As a result, our Ni/SiC/carbon cloth exhibits an excellent EMI shielding effectiveness of 68.6 dB with a thickness of only 0.39 mm, as well as high flexibility and long-term duration stability benefited from the outstanding mechanical properties of SiC nanowiskers, showing potential for EMI shielding applications.

8.
J Sci Food Agric ; 103(7): 3645-3658, 2023 May.
Article in English | MEDLINE | ID: mdl-36645331

ABSTRACT

BACKGROUND: Tilapia skin collagen hydrolysates (TSCHs) are the product of enzymatic hydrolysis of collagen, which is mainly extracted from tilapia skin. The components of TSCHs have recently been reported to play a preventive role in dextran sulfate sodium (DSS)-induced ulcerative colitis (UC). However, it has not been illustrated whether TSCHs can prevent against DSS-induced UC via the gut microbiota and its derived metabolites. RESULTS: TSCHs are mainly composed of amino acids, which have similar characteristics to collagen, with most having a molecular weight below 5 kDa. In a mouse model of UC, TSCHs had no toxic effect at a dose of 60 g kg-1 and could reduce body weight changes, colon length, histopathological changes and score, and the level of the serum inflammatory cytokine interleukin (IL)-6. Concurrently, 16 S rRNA sequencing showed that TSCHs significantly reduced the abundance of Bacteroidetes and Proteobacteria at the phylum level and norank_f__Muribaculaceae and Escherichia-Shigella at the genus level, while they increased the abundance of Firmicutes at the phylum level and Lachnoclostridium, Allobaculum, Enterorhabdus, and unclassified__f__Ruminococcaceae at the genus level. Target metabolomic analysis showed that TSCHs elevated the concentration of total acid, acetic acid, propanoic acid, and butanoic acid, but reduced isovaleric acid concentrations. Moreover, Pearson correlation analysis revealed that Allobaculum, unclassified_Ruminococcaceae, and Enterorhabdus were positively correlated with acetic acid and butyric acid, but not Escherichia-Shigella. CONCLUSION: These findings suggest that TSCHs can prevent UC by modulating gut microbial and microbiota-derived metabolites. © 2023 Society of Chemical Industry.


Subject(s)
Actinobacteria , Colitis, Ulcerative , Colitis , Tilapia , Animals , Mice , Colitis, Ulcerative/prevention & control , Genes, rRNA , Colon , Acetic Acid , Firmicutes , Bacteroidetes , Butyric Acid , Collagen , Dextran Sulfate , Disease Models, Animal , Mice, Inbred C57BL
9.
J Pharm Biomed Anal ; 222: 115109, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36270097

ABSTRACT

Rheumatoid arthritis (RA) is an autoimmune disease characterized by persistent joint inflammation. The development of rheumatoid arthritis is directly correlated with the disturbance of gut microbiome and its metabolites. RA can be effectively treated with the Danggui Sini decoction (DSD), a Traditional Chinese medicine (TCM) prescription from the Treatise on Febrile Diseases. Further research is needed to clarify the precise mechanism of DSD in the treatment of RA. In this study, 1H NMR metabonomics and 16 S rRNA gene sequencing techniques were used to clarify the intervention of DSD on CIA-induced RA. The results of 1H NMR metabolomics of feces revealed that five metabolites (alanine, glucose, taurine, betaine, and xylose) were disturbed, which could be regarded as potential biomarkers of RA. The intestinal microbiome of RA rats had changed, according to the results of 16 S rRNA gene sequencing; eight microbes (g_norank_f_Eubacterium_coprostanoligenes_group, g_Ruminococcus_torques_group, g_Dubosiell, g_Lactobacillus, g_norank_f_Desulfovibrionaceae, g_Bacteroides, g_Oscillibacter, and g_Romboutsia) occurred significantly at the genus level, and DSD significantly impacted six of them (g_Dubosiell, g_Lactobacillus, g_norank_f_Eubacterium_coprostanoligenes_group, g_Ruminococcus_torques_grou, g_Bacteroides, and g_Romboutsia). Three of them (g_norank_f_Eubacterium_ coprostanoligenes_group, g_Romboutsia, and g_Lactobacillus) were regarded as key microbiomes for DSD to treat RA, and three common metabolic pathways (taurine and hypotaurine metabolism; alanine, aspartate, and glutamate metabolism; primary bile acid biosynthesis) were discovered based on the 1H NMR metabonomics and PICRUST2 prediction of 16 S rRNA gene sequencing. Six SCFAs in feces (acetic acid, butyric acid, propionic acid, caproic acid, isobutyric acid, and valeric acid) increased significantly in RA, according to the outcomes of targeting SCFAs, while five SCFAs (acetic acid, butyric acid, propionic acid, caproic acid, and valeric acid) had decreased significantly due to DSD treatment. In conclusion, our study indicated that DSD could regulate RA's metabolic disorder by affecting intestinal microbiome and its metabolites. It also establishes a framework for future research into exploiting gut microbes therapeutic to treat RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Drugs, Chinese Herbal , Rats , Animals , RNA, Ribosomal, 16S/genetics , Butyric Acid , Genes, rRNA , Metabolomics/methods , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/chemistry , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/drug therapy , Taurine , Alanine , Collagen
10.
RSC Adv ; 12(24): 15555-15563, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35685177

ABSTRACT

The use of hafnia (HfO2) has facilitated recent advances in high-density microchips. However, the low deposition rate, poor controllability, and lack of systematic research on the growth mechanism limit the fabrication efficiency and further development of HfO2 films. In this study, the high-throughput growth of HfO2 films was realized via laser chemical vapor deposition using a laser spot with a large gradient temperature distribution (100 K mm-1), in order to improve the experimental efficiency and controllability of the entire process. HfO2 films fabricated by a single growth process could be divided into four regions with different morphologies, and discerned for deposition temperatures increasing from 1300 K to 1600 K. The maximum deposition rate reached 362 µm h-1, which was 102 to 104 times higher than that obtained using existing deposition methods. The dielectric constants of high-throughput HfO2 films were in the range of 16-22, which satisfied the demand of replacing the traditional SiO2 layer for a new generation of microchips.

11.
Metabolites ; 13(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36676934

ABSTRACT

Liver fibrosis is a pathological result of liver injury that usually leads to a pathophysiological wound healing response. The total alkaloids of Corydalis saxicola Bunting (TACS) have been used for hepatoprotective effects on the liver. However, its exact therapeutic mechanisms of liver fibrosis are not yet well understood. To explore the potential anti-fibrosis mechanism of TACS, metabolomics coupled with network pharmacology were applied to reveal the underlying mechanisms. Ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) combined with multivariate statistical analyses were performed to estimate changes in metabolic profiles. As a result, a total of 23 metabolites in rats with liver fibrosis were altered; of these, 11 had been downregulated and 12 had been upregulated compared with the control group. After TACS treatment, the levels of 13 metabolites were significantly restored compared with the CCl4-treated group, of which 4 metabolites were up-regulated and 9 metabolites were down-regulated. Many of these metabolites are involved in the bile acid metabolism, glutathione metabolism, tryptophan metabolism and purine metabolism. Then, three key targets, including cytochrome P450 family1 subfamily A member 1 (CYP1A1), ornithine decarboxylase 1 (OCD1) and monoamine oxidase Type B (MAOB) were predicted as potential therapeutic targets of TACS against liver fibrosis through network pharmacology analysis. Finally, palmatine, tetrahydropalmatine and dehydrocavidine were screened as potential active compounds responsible for the anti-fibrosis effect of TACS by molecular docking analysis. This study reveals that TACS exerted anti-fibrosis effects by regulating the liver metabolic pathway with multiple components and multiple targets, which is helpful to further clarify the hepatoprotective mechanisms of natural plant extracts.

SELECTION OF CITATIONS
SEARCH DETAIL
...