Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Cancer Imaging ; 24(1): 104, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118144

ABSTRACT

OBJECTIVE: To develop preoperative nomograms using risk factors based on clinicopathological and MRI for predicting the risk of positive surgical margin (PSM) after radical prostatectomy (RP). PATIENTS AND METHODS: This study retrospectively enrolled patients who underwent prostate MRI before RP at our center between January 2015 and November 2022. Preoperative clinicopathological factors and MRI-based features were recorded for analysis. The presence of PSM (overall PSM [oPSM]) at pathology and the multifocality of PSM (mPSM) were evaluated. LASSO regression was employed for variable selection. For the final model construction, logistic regression was applied combined with the bootstrap method for internal verification. The risk probability of individual patients was visualized using a nomogram. RESULTS: In all, 259 patients were included in this study, and 76 (29.3%) patients had PSM, including 40 patients with mPSM. Final multivariate logistic regression revealed that the independent risk factors for oPSM were tumor diameter, frank extraprostatic extension, and annual surgery volume (all p < 0.05), and the nomogram for oPSM reached an area under the curve (AUC) of 0.717 in development and 0.716 in internal verification. The independent risk factors for mPSM included the percentage of positive cores, tumor diameter, apex depth, and annual surgery volume (all p < 0.05), and the AUC of the nomogram for mPSM was 0.790 in both development and internal verification. The calibration curve analysis showed that these nomograms were well-calibrated for both oPSM and mPSM. CONCLUSIONS: The proposed nomograms showed good performance and were feasible in predicting oPSM and mPSM, which might facilitate more individualized management of prostate cancer patients who are candidates for surgery.


Subject(s)
Magnetic Resonance Imaging , Margins of Excision , Nomograms , Prostatectomy , Prostatic Neoplasms , Humans , Male , Prostatectomy/methods , Prostatic Neoplasms/surgery , Prostatic Neoplasms/pathology , Prostatic Neoplasms/diagnostic imaging , Retrospective Studies , Middle Aged , Aged , Magnetic Resonance Imaging/methods , Risk Factors
2.
Natl Sci Rev ; 11(8): nwae107, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39007011

ABSTRACT

The magnetic correlations at the superconductor/ferromagnet (S/F) interfaces play a crucial role in realizing dissipation-less spin-based logic and memory technologies, such as triplet-supercurrent spin-valves and 'π' Josephson junctions. Here we report the observation of an induced large magnetic moment at high-quality nitride S/F interfaces. Using polarized neutron reflectometry and DC SQUID measurements, we quantitatively determined the magnetization profile of the S/F bilayer and confirmed that the induced magnetic moment in the adjacent superconductor only exists below T C. Interestingly, the direction of the induced moment in the superconductors was unexpectedly parallel to that in the ferromagnet, which contrasts with earlier findings in S/F heterostructures based on metals or oxides. First-principles calculations verified that the unusual interfacial spin texture observed in our study was caused by the Heisenberg direct exchange coupling with constant J∼4.28 meV through d-orbital overlapping and severe charge transfer across the interfaces. Our work establishes an incisive experimental probe for understanding the magnetic proximity behavior at S/F interfaces and provides a prototype epitaxial 'building block' for superconducting spintronics.

3.
J Am Chem Soc ; 146(29): 20205-20212, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39007348

ABSTRACT

Incipient ferroelectrics have emerged as an attractive class of functional materials owing to their potential to be engineered for exotic ferroelectric behavior, holding great promise for expanding the ferroelectric family. However, thus far, their artificially engineered ferroelectricity has fallen far short of rivaling classic ferroelectrics. In this study, we address this challenge by developing a superfine nanodomain engineering strategy. By applying this approach to representative incipient ferroelectric of SrTiO3-based films, we achieve unprecedentedly strong ferroelectricity, not only surpassing previous records for incipient ferroelectrics but also being comparable to classic ferroelectrics. The remanent polarization of the thin film reaches up to 17.0 µC cm-2 with an ultrahigh Curie temperature of 973 K. Atomic-scale investigations elucidate the origin of this robust ferroelectricity in the emergent high-density superfine nanodomains spanning merely 3-10 unit cells. Combining experimental results with theoretical assessments, we unveil the underlying mechanism, where the intentionally introduced diluted foreign Fe element creates a deeper Landau energy well and promotes a short-range ordering of polarization. Our developed strategy significantly streamlines the design of unconventional ferroelectrics, providing a versatile pathway for exploring new and superior ferroelectric materials.

4.
Inorg Chem ; 63(32): 15098-15104, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39072372

ABSTRACT

Interfacial strain engineering can induce structural transformation and introduce new physical properties into materials, which is an effective method to prepare new multifunctional materials. However, interfacial strain has a limited spatial impact size. For example, in 2D thin films, the critical thickness of biaxial strain is typically less than 20 nm, which is not conducive to the maintenance of a strained structure and properties in thick film materials. The construction of a 3D interface can solve this problem. The large lattice mismatch between the BaZrO3 thin film and the substrate can induce the out-of-phase boundary (OPB) structure, which can extend along the thickness direction with the stacking of atoms. The lattice distortion at the OPB structure can provide a clamping effect for each layer of atoms, thus expanding the spatial influence range of biaxial strain. As a result, the uniform in-plane strain distribution and strain-induced ferroelectricity (Pr = 13 µC/cm2) are maintained along the thickness direction in BaZrO3 films.

5.
Natl Sci Rev ; 11(7): nwae175, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38883296

ABSTRACT

Anisotropy is a significant and prevalent characteristic of materials, conferring orientation-dependent properties, meaning that the creation of original symmetry enables key functionality that is not found in nature. Even with the advancements in atomic machining, synthesis of separated symmetry in different directions within a single structure remains an extraordinary challenge. Here, we successfully fabricate NiS ultrafine nanorods with separated symmetry along two directions. The atomic structure of the nanorod exhibits rotational symmetry in the radial direction, while its axial direction is characterized by divergent translational symmetry, surpassing the conventional crystalline structures known to date. It does not fit the traditional description of the space group and the point group in three dimensions, so we define it as a new structure in which translational symmetry and rotational symmetry are separated. Further corroborating the atomic symmetric separation in the electronic structure, we observed the combination of stripe and vortex magnetic domains in a single nanorod with different directions, in accordance with the atomic structure. The manipulation of nanostructure at the atomic level introduces a novel approach to regulate new properties finely, leading to the proposal of new nanotechnology mechanisms.

6.
Insights Imaging ; 15(1): 147, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38886256

ABSTRACT

OBJECTIVE: To investigate the diagnostic performance of MRI in detecting clinically significant prostate cancer (csPCa) and prostate cancer (PCa) in patients with prostate-specific antigen (PSA) levels of 4-10 ng/mL. METHODS: A computerized search of PubMed, Embase, Cochrane Library, Medline, and Web of Science was conducted from inception until October 31, 2023. We included articles on the use of MRI to detect csPCa or PCa at 4-10 ng/mL PSA. The primary and secondary outcomes were MRI performance in csPCa and PCa detection, respectively; the estimates of sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were pooled in a bivariate random-effects model. RESULTS: Among the 19 studies (3879 patients), there were 10 (2205 patients) and 13 studies (2965 patients) that reported MRI for detecting csPCa or PCa, respectively. The pooled sensitivity and specificity for csPCa detection were 0.84 (95% confidence interval [CI], 0.79-0.88) and 0.76 (95%CI, 0.65-0.84), respectively, for PCa detection were 0.82 (95%CI, 0.75-0.87) and 0.74 (95%CI, 0.65-0.82), respectively. The pooled NPV for csPCa detection was 0.91 (0.87-0.93). Biparametric magnetic resonance imaging also showed a significantly higher sensitivity and specificity relative to multiparametric magnetic resonance imaging (both p < 0.01). CONCLUSION: Prostate MRI enables the detection of csPCa and PCa with satisfactory performance in the PSA gray zone. The excellent NPV for csPCa detection indicates the possibility of biopsy decision-making in patients in the PSA gray zone, but substantial heterogeneity among the included studies should be taken into account. CLINICAL RELEVANCE STATEMENT: Prostate MRI can be considered a reliable and satisfactory tool for detecting csPCa and PCa in patients with PSA in the "gray zone", allowing for reducing unnecessary biopsy and optimizing the overall examination process. KEY POINTS: Prostate-specific antigen (PSA) is a common screening tool for prostate cancer but risks overdiagnosis. MRI demonstrated excellent negative predictive value for prostate cancer in the PSA gray zone. MRI can influence decision-making for these patients, and biparametric MRI should be further evaluated.

7.
Adv Sci (Weinh) ; : e2307571, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38923859

ABSTRACT

The demand for low-dimensional ferroelectric devices is steadily increasing, however, the thick substrates in epitaxial films impede further size miniaturization. Freestanding films offer a potential solution by eliminating substrate constraints. Nevertheless, it remains an ongoing challenge to improve the stability in thin and fragile freestanding films under strain and temperature. In this work, the structure and ferroelectric order of freestanding PbTiO3 (PTO) films are investigated under continuous variation of the strain and temperature using nondestructive optical second harmonic generation (SHG) technique. The findings reveal that there are both out-of-plane and in-plane domains with polarization along out-of-plane and in-plane directions in the orthorhombic-like freestanding PTO films, respectively. In contrast, only out-of-plane domains are observed in the tetragonal epitaxial PTO films. Remarkably, the ferroelectricity of freestanding PTO films is strengthened under small uniaxial tensile strain from 0% up to 1.66% and well-maintained under larger biaxial tensile strain up to 2.76% along the [100] direction and up to 4.46% along the [010] direction. Moreover, a high Curie temperature of 630 K is identified in 50 nm thick freestanding PTO films by wide-temperature-range SHG. These findings provide valuable understanding for the development of the next-generation electronic nanodevices with flexibility and thermostability.

8.
Nat Commun ; 15(1): 3257, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627413

ABSTRACT

Biological nervous system outperforms in both dynamic and static information perception due to their capability to integrate the sensing, memory and processing functions. Reconfigurable neuromorphic transistors, which can be used to emulate different types of biological analogues in a single device, are important for creating compact and efficient neuromorphic computing networks, but their design remains challenging due to the need for opposing physical mechanisms to achieve different functions. Here we report a neuromorphic electrolyte-gated transistor that can be reconfigured to perform physical reservoir and synaptic functions. The device exhibits dynamics with tunable time-scales under optical and electrical stimuli. The nonlinear volatile property is suitable for reservoir computing, which can be used for multimodal pre-processing. The nonvolatility and programmability of the device through ion insertion/extraction achieved via electrolyte gating, which are required to realize synaptic functions, are verified. The device's superior performance in mimicking human perception of dynamic and static multisensory information based on the reconfigurable neuromorphic functions is also demonstrated. The present study provides an exciting paradigm for the realization of multimodal reconfigurable devices and opens an avenue for mimicking biological multisensory fusion.

9.
Science ; 383(6681): 388-394, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38271502

ABSTRACT

Identifying a suitable water-soluble sacrificial layer is crucial to fabricating large-scale freestanding oxide membranes, which offer attractive functionalities and integrations with advanced semiconductor technologies. Here, we introduce a water-soluble sacrificial layer, "super-tetragonal" Sr4Al2O7 (SAOT). The low-symmetric crystal structure enables a superior capability to sustain epitaxial strain, allowing for broad tunability in lattice constants. The resultant structural coherency and defect-free interface in perovskite ABO3/SAOT heterostructures effectively restrain crack formation during the water release of freestanding oxide membranes. For a variety of nonferroelectric oxide membranes, the crack-free areas can span up to a millimeter in scale. This compelling feature, combined with the inherent high water solubility, makes SAOT a versatile and feasible sacrificial layer for producing high-quality freestanding oxide membranes, thereby boosting their potential for innovative device applications.

10.
Adv Sci (Weinh) ; 10(27): e2303630, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37485810

ABSTRACT

The origin of insulating ferromagnetism in epitaxial LaCoO3 films under tensile strain remains elusive despite extensive research efforts are devoted. Surprisingly, the spin state of its Co ions, the main parameter of its ferromagnetism, is still to be determined. Here, the spin state in epitaxial LaCoO3 thin films is systematically investigated to clarify the mechanism of strain-induced ferromagnetism using element-specific X-ray absorption spectroscopy and dichroism. Combining with the configuration interaction cluster calculations, it is unambiguously demonstrated that Co3+ in LaCoO3 films under compressive strain (on LaAlO3 substrate) is practically a low-spin state, whereas Co3+ in LaCoO3 films under tensile strain (on SrTiO3 substrate) have mixed high-spin and low-spin states with a ratio close to 1:3. From the identification of this spin state ratio, it is inferred that the dark strips observed by high-resolution scanning transmission electron microscopy indicate the position of Co3+ high-spin state, i.e., an observation of a spin state disproportionation in tensile-strained LaCoO3 films. This consequently explains the nature of ferromagnetism in LaCoO3 films. The study highlights the importance of spin state degrees of freedom, along with thin-film strain engineering, in creating new physical properties that do not exist in bulk materials.

11.
Small ; 19(43): e2304146, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37356048

ABSTRACT

The quantum phase transition caused by regulating the electronic correlation in strongly correlated quantum materials has been a research hotspot in condensed matter science. Herein, a photon-induced quantum phase transition from the Kondo-Mott insulating state to the low temperature metallic one accompanying with the magnetoresistance changing from negative to positive in the infinite-layer NdNiO2 films is reported, where the antiferromagnetic coupling among the Ni1+ localized spins and the Kondo effect are effectively suppressed by manipulating the correlation of Ni-3d and Nd-5d electrons under the photoirradiation. Moreover, the critical temperature Tc of the superconducting-like transition exhibits a dome-shaped evolution with the maximum up to ≈42 K, and the electrons dominate the transport process proved by the Hall effect measurements. These findings not only make the photoinduction a promising way to control the quantum phase transition by manipulating the electronic correlation in Mott-like insulators, but also shed some light on the possibility of the superconducting in electron-doped nickelates.

12.
Adv Sci (Weinh) ; 10(19): e2205479, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37129311

ABSTRACT

Nitride perovskite LaWN3 has been predicted to be a promising ferroelectric material with unique properties for diverse applications. However, due to the challenging sample preparation at ambient pressure, the crystal structure of this nitride remains unsolved, which results in many ambiguities in its properties. Here, the authors report a comprehensive study of LaWN3 based on high-quality samples synthesized by a high-pressure method, leading to a definitive resolution of its crystal structure involving nitrogen deficiency. Combined with theoretical calculations, these results show that LaWN3 adopts an orthorhombic Pna21 structure with a polar symmetry, possessing a unique atomic polarization along the c-axis. The associated atomic polar distortions in LaWN3 are driven by covalent hybridization of W: 5d and N: 2p orbitals, opening a direct bandgap that explains its semiconducting behaviors. The structural stability and electronic properties of this nitride are also revealed to be closely associated with its nitrogen deficiency. The success in unraveling the structural and electronic ambiguities of LaWN3 would provide important insights into the structures and properties of the family of nitride perovskites.

13.
Nat Commun ; 14(1): 2274, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37080982

ABSTRACT

Magnetoelectric coupling, as a fundamental physical nature and with the potential to add functionality to devices while also reducing energy consumption, has been challenging to be probed in freestanding membranes or two-dimensional materials due to their instability and fragility. In this paper, we report a magnetoelectric coupling probed by optical second harmonic generation with external magnetic field, and show the manipulation of the ferroelectric and antiferromagnetic orders by the magnetic and thermal fields in BiFeO3 films epitaxially grown on the substrates and in the freestanding ones. Here we define an optical magnetoelectric-coupling constant, denoting the ability of controlling light-induced nonlinear polarization by the magnetic field, and found the magnetoelectric-coupling was suppressed by strain releasing but remain robust against thermal fluctuation for freestanding BiFeO3.

14.
Nano Lett ; 23(4): 1273-1279, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36729943

ABSTRACT

Regulating the magnetic properties of multiferroics lays the foundation for their prospective application in spintronic devices. Single-phase multiferroics, such as rare-earth ferrites, are promising candidates; however, they typically exhibit weak magnetism at room temperature (RT). Here, we significantly boosted the RT ferromagnetism of a representative ferrite, EuFeO3, by oxygen defect engineering. Polarized neutron reflectometry and magnetometry measurements reveal that saturation magnetization reaches 0.04 µB/Fe, which is approximately 5 times higher than its bulk phase. Combining the annular bright-field images with theoretical assessment, we unravel the underlying mechanism for magnetic enhancement, in which the decrease in Fe-O-Fe bond angles caused by oxygen vacancies (VO) strengthens magnetic interactions and tilts Fe spins. Furthermore, the internal relationship between magnetism and VO was established by illustrating how the magnetic structure and magnitude change with VO configuration and concentration. Our strategy for regulating magnetic properties can be applied to numerous functional oxide materials.

15.
J Phys Chem Lett ; 14(3): 825-831, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36655858

ABSTRACT

Two-dimensional ferromagnetic Weyl half-metals that are robust against spin-orbital coupling were theoretically proposed recently, in which the nodal points and the nodal loops are protected by specific symmetries. As the symmetry of a ferromagnetic material is highly dependent on the magnetization orientation, here we predict a family of two-dimensional ferromagnetic Weyl half-metals, Mn2X3 (X = S, Se, Te) monolayers, to investigate the band topology under different magnetization orientations in the presence of spin-orbital coupling. The Curie temperatures (∼1000 K) were estimated to be much higher than room temperature due to the strong double exchange interaction and the suppression of spin fluctuation for the two-sublayer structure. Taking a Mn2Te3 monolayer as an example, we demonstrated the evolution of the nodal points and the nodal loops in the presence of spin-orbital coupling via manipulating magnetization orientation. Our work provides a family of high temperature two-dimensional ferromagnetic Weyl half-metals for investigating the nontrivial band topology.

16.
Adv Mater ; 35(2): e2208221, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36300813

ABSTRACT

Interfacial magnetism stimulates the discovery of giant magnetoresistance (MR) and spin-orbital coupling across the heterointerfaces, facilitating the intimate correlation between spin transport and complex magnetic structures. Over decades, functional heterointerfaces composed of nitrides have seldom been explored due to the difficulty in synthesizing high-quality nitride films with correct compositions. Here, the fabrication of single-crystalline ferromagnetic Fe3 N thin films with precisely controlled thicknesses is reported. As film thickness decreases, the magnetization dramatically deteriorates, and the electronic state changes from metallic to insulating. Strikingly, the high-temperature ferromagnetism is maintained in a Fe3 N layer with a thickness down to 2 u.c. (≈8 Å). The MR exhibits a strong in-plane anisotropy; meanwhile, the anomalous Hall resistivity reverses its sign when the Fe3 N layer thickness exceeds 5 u.c. Furthermore, a sizable exchange bias is observed at the interfaces between a ferromagnetic Fe3 N and an antiferromagnetic CrN. The exchange bias field and saturation moment strongly depend on the controllable bending curvature using the cylinder diameter engineering technique, implying the tunable magnetic states under lattice deformation. This work provides a guideline for exploring functional nitride films and applying their interfacial phenomena for innovative perspectives toward practical applications.

17.
Adv Mater ; 35(2): e2206961, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36281802

ABSTRACT

Interfaces formed by correlated oxides offer a critical avenue for discovering emergent phenomena and quantum states. However, the fabrication of oxide interfaces with variable crystallographic orientations and strain states integrated along a film plane is extremely challenging by conventional layer-by-layer stacking or self-assembling. Here, the creation of morphotropic grain boundaries (GBs) in laterally interconnected cobaltite homostructures is reported. Single-crystalline substrates and suspended ultrathin freestanding membranes provide independent templates for coherent epitaxy and constraint on the growth orientation, resulting in seamless and atomically sharp GBs. Electronic states and magnetic behavior in hybrid structures are laterally modulated and isolated by GBs, enabling artificially engineered functionalities in the planar matrix. This work offers a simple and scalable method for fabricating unprecedented innovative interfaces through controlled synthesis routes as well as providing a platform for exploring potential applications in neuromorphics, solid-state batteries, and catalysis.

18.
Phys Rev Lett ; 131(24): 246801, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38181148

ABSTRACT

Disordered ferroics hold great promise for next-generation magnetoelectric devices because their lack of symmetry constraints implies negligible hysteresis with low energy costs. However, the transition temperature and the magnitude of polarization and magnetization are still too low to meet application requirements. Here, taking the prototype perovskite of SrTiO_{3} as an instance, we realize a coexisting spin and dipole reentrant glass states in SrTiO_{3} homoepitaxial films via manipulation of local symmetry. Room-temperature saturation magnetization and spontaneous polarization reach ∼ 10 emu/cm^{3} and ∼ 25 µC/cm^{2}, respectively, with high transition temperatures (101 K and 236 K for spin and dipole glass temperatures and 556 K and 1100 K for Curie temperatures, respectively). Our atomic-scale investigation points out an underlying mechanism, where the Ti/O-defective unit cells break the local translational and orbital symmetry to drive the formation of unusual slush states. This study advances our understanding of the nature of the intricate couplings of ferroic glasses. Our approach could be applied to numerous perovskite oxides for the simultaneous control of the local magnetic and polar orderings and for the exploration of the underlying physics.

19.
Nano Lett ; 22(22): 8983-8990, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36331193

ABSTRACT

Protonation can be used to tune diverse physical and chemical properties of functional oxides. Although protonation of nickelate perovskites has been reported, details on the crystal structure of the protonated phase and a quantitative understanding of the effect of protons on physical properties are still lacking. Therefore, in this work, we select NdNiO3 (NNO) as a model system to understand the protonation process from pristine NNO to protonated HxNdNiO3 (H-NNO). We used a reliable electrochemical method with well-defined reference electrode to trigger the protonation-induced phase transition. We found that the protonated H-NNO phase showed a colossal ∼13% lattice expansion caused by a large tilt of NiO6 octahedra and displacement of Nd cations. Importantly, we further designed a novel device configuration to induce a gradient of proton concentration into a single NNO thin film to establish a quantitative correlation between the proton concentration and the lattice constant and transport property of H-NNO.

20.
ACS Appl Mater Interfaces ; 14(45): 51096-51104, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36318085

ABSTRACT

Antiferroelectric PbZrO3 has attracted renewed interest in recent years because of its unique properties and wide range of potential applications. However, the nature of antiferroelectricity and its evolution with the electric field and temperature remain controversial, mostly due to the difficulty of obtaining high-quality single-crystal samples. The lack of consensus regarding the phase transition in PbZrO3 is not only important on a fundamental side but also greatly hinders further applications. Herein, high-quality PbZrO3 epitaxial thin films are successfully fabricated by pulsed laser deposition. The structural and physical properties of the films are systematically studied via a combination of electric property measurements, X-ray diffraction, scanning transmission electron microscopy imaging, and second-harmonic generation studies. Our studies unveil the noncentrosymmetric nature of PbZrO3 films at room temperature. Moreover, the Curie temperature increased to 270°, ∼40° higher than that in the bulk, and no intermediate ferroelectric phase was observed. Besides, an incipient ferroelectric with relaxor-like behavior above the Curie temperature due to the existence of a local polar cluster in the high-temperature paraelectric phase is experimentally observed for the first time. Our studies provide a better understanding of PbZrO3 thin films and pave the way for practical applications of antiferroelectric material in modern electronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL