Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 254
Filter
1.
Sci Total Environ ; 954: 176652, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39362537

ABSTRACT

The Tibetan Plateau is one of the highest and most pristine plateaus in the world, and its ecological environment has a significant impact on global climate and the distribution of water resources. Mercury (Hg), as a toxic metal pollutant, can have a severe impact on the health of living organisms and the ecosystem due to its presence in the environment. This study collected 336 soil samples from 28 sites across four typical surface vegetation landscapes (meadow, grassland, desert, and forest) on the Tibetan Plateau to measure soil THg (Total Hg) concentrations. The research aimed to explore the factors influencing soil THg levels, analyze pollution and environmental risks of THg in the surface soil, and evaluate the associated health risks to the local population. The results indicate that the mean soil THg concentration (31.84 ± 32.58 ng·g-1) of this study is compared to the background value of THg in Tibetan Plateau soils (37.0 ng·g-1), but there are significant differences in THg concentration among soils with different surface vegetation landscapes. The mean THg concentration in soils of forest vegetation types (74.42 ± 41.19 ng·g-1) is approximately twice the background value of Tibetan Plateau soils. In the forested regions of the southeastern, eastern, and southern Tibetan Plateau, soil concentrations of total mercury are relatively high, whereas in the desert areas of the northern, northwestern, and northeastern Tibetan Plateau, the concentrations are lower. Organic matter (soil organic carbon) being an important factor influencing the soil THg. Based on existing surface soil THg data from this and previous research in Tibetan Plateau (n = 477), 34.2 % of the samples show Hg pollution and potential ecological risks. However, the health risks of soil Hg to both adults and children are not significant.

2.
Environ Pollut ; 363(Pt 1): 125016, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39341408

ABSTRACT

Microplastics (MPs) pollution has become a vital global environmental issue. However, comprehensive understanding of the ecological risks of MPs in soils of Northeast Tibetan Plateau still requires further study. In this study, we used the Agilent 8700 Laser Direct Infrared (LDIR) spectroscopy to analyze the characteristics of 10-1000 µm MPs in soils of different vegetation types throughout the Qilian Mountains basin, and to comprehensively explore the ecological risks of MPs in various ecological environments. The results indicate that MPs abundance is highest in soil of shrub areas (26,369 ± 32,147 items kg-1-dry weight (dw)), followed by woodland (22,215 ± 22,544 items kg-1-dw), desert (17,769 ± 9,040 items kg-1-dw), grassland (16,462 ± 12,872 items kg-1-dw), and forest (15,662 ± 13,857 items kg-1-dw). MPs in soils of different vegetation types show similar physical and chemical characteristics, with the shape dominated by fragments (93%-96%), followed by fibers and a few beads, with dominant sizes of 10-30 µm (63%-76%), and polymers dominated by polyamide (PA) and polyethylene terephthalate (PET). Additionally, the environmental risks posed by the fundamental characteristics of MPs have been quantified through the Pollution Load Index (PLI), Pollution Hazard Index (PHI), and Potential Ecological Risk Index (PERI) models. According to the PLI assessment, the current levels of MPs in the environment have not yet imposed significant burdens on the ecosystem. However, the results of PHI and PERI indicate a higher risk of MPs pollution in the Qilian Mountains. This study offers vital information for MPs pollution in the whole Qilian Mountains regions and their potential environmental risks in remote areas' soil.

3.
Sci Total Environ ; 954: 176458, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39332726

ABSTRACT

Climate warming has accelerated glacier melting, releasing legacy pollutants such as mercury (Hg) into aquatic ecosystems. While the relationship between Hg in glacier meltwater runoff, total suspended particles (TSP), and runoff discharges has been established, the underlying inter-relationships and governing factors remain poorly understood. To address this knowledge gap, we conducted a continuous fixed-point sampling at Laohugou No. 12 Glacier in the northern Tibetan Plateau from June to September 2019 spanning the entire glacier ablation season. Our study analyzed the variations of Hg partition in the meltwater runoff and conducted a comprehensive co-analysis of Hg with TSP and discharge to uncover the dominant factors of Hg input into meltwater runoff. The concentration of total Hg (THg) in the meltwater runoff ranged from 0.7 to 112.6 ng/L, with an average concentration of 26.6 ± 25.1 ng/L. Particulate Hg (PHg) was found to be the predominant partition, while dissolved Hg (DHg) exhibited a notable increase in June and September. THg concentration significantly correlated with TSP concentration (r = 0.94, P < 0.01), exceeding the correlation with discharge (r = 0.76, P < 0.01) during the entire ablation period. However, further examination during varying hydrological periods revealed differing associations among Hg speciation concentrations, TSP concentration, and discharge. During the rising limb of the hydrograph, THg (r = 0.86, P < 0.01) and PHg concentrations (r = 0.87, P < 0.01) exhibited a significant correlation with TSP concentration, primarily driven by TSP, implying that Hg availability determines the Hg input into meltwater runoff. Conversely, during the recession limb of the hydrograph, THg concentration was primarily influenced by discharge (r = 0.85, P < 0.01). PHg (r = 0.84, P < 0.01) and TSP (r = 0.97, P < 0.01) concentrations were strongly influenced by discharge, indicating that hydraulic action is the dominant factor affecting Hg input. Our study elucidated the impact of glacier hydrological processes on Hg transport, revealing the dominant factors of Hg input during different hydrological periods. This contributes to a deeper understanding of Hg input into meltwater runoff and improves predictions of Hg export through glacier melt in high mountain regions.

4.
Sci Total Environ ; 954: 176370, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39299335

ABSTRACT

Microplastics (MPs) in glaciers of remote areas are a hot topic linking the global transport of atmospheric MPs. The Tibetan Plateau (TP) holds large volume of glaciers, providing an effective way to trace MPs transport. Moreover, MPs in glaciers may have adverse effects on the local ecosystem and human health. In this study, we investigate MPs in snowpits collected from six glaciers across the different domain of the TP. The average abundance of MPs in six snowpits is 339.22 ± 51.85 items L-1 (with size ≥10 µm) measured by Agilent 8700 Laser Direct Infrared Chemical Imaging System (LDIR), represented by relatively high MPs abundance in the southern TP and low in the northern TP. The polymers with lower density, namely polyethylene (PE), polyamide (PA), and rubber, are the main MPs types, which are predominated by fragments with sizes smaller than 100 µm in each snowpit. Sources of MPs on glaciers include local tourism and vehicle traffic emissions of MPs. Meanwhile, long-range atmospheric transport of MPs from surrounded regions cannot be ignored. Backward trajectory analysis indicates cross-boundary transport of atmospheric MPs from South Asia play an important role on MPs deposited onto TP glaciers. Analysis further reveals that MPs in glaciers are associated with atmospheric mineral dust deposition. This study provides new data for the investigation of MPs in glaciers of remote areas, and a reference for studying MPs in the ice cores of TP glaciers.

5.
ACS Nano ; 18(34): 23812-23822, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39146501

ABSTRACT

As a host for exchange bias (EB), van der Waals (vdW) magnetic materials have exhibited intriguing and distinct functionalities from conventional magnetic materials. The EB in most vdW systems is far below room temperature, which poses a challenge for practical applications. Here, by using Kerr microscopy, we demonstrate a record-high blocking temperature that approaches room temperature and a huge positive EB field that nears 2 kOe at 100 K in naturally oxidized two-dimensional (2D) vdW ferromagnetic Fe3GaTe2 nanoflakes. Moreover, we realized a reversible manipulation of both the presence/absence and positive/negative signs of EB via a training magnetic field without multiple field cooling processes. Thus, our study clearly reveals the robust, sizable, and sign-tunable EB in vdW magnetic materials up to near room temperature, thereby establishing Fe3GaTe2 as an emerging room-temperature-operating vdW material and paving the way for designing practical 2D spintronic devices.

6.
Sci Total Environ ; 951: 175441, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39151616

ABSTRACT

Quantification mercury (Hg) pools in forests is crucial for understanding the Hg assimilation, flux and even biogeochemical cycle in forest ecosystems. While several investigations focused on Hg pools among broad-leaved, coniferous and mixed forests, there was still absent information on alpine forest. We sampled soil, moss and various tissues of the dominant Qinghai spruce (Picea crassifolia Kom.) to investigate Hg concentrations and pools, and assess Hg accumulation dynamics in the Qilian Mountains, northwestern China. The mean Hg concentration increased in the following order: trunk wood (1.8 ± 0.7 ng g-1) < branch (4.6 ± 0.8 ng g-1) < root (12.2 ± 2.9 ng g-1) < needle (19.3 ± 5.6 ng g-1) < bark (28.7 ± 9.0 ng g-1) < soil (34.1 ± 7.7 ng g-1) < litterfall (42.9 ± 2.9 ng g-1) < moss (62.5 ± 5.0 ng g-1). The soil contained Hg pools two orders of magnitude higher than vegetation and accounted for 92.2 % of the total Hg pool in the alpine forest ecosystem. Moss, despite representing only 2.7 % of total vegetation biomass, contained a disproportionate 16.7 % of the Hg pool. Although species-specific, aboveground spruce tissues exhibited higher Hg pools in alpine forests compared to other forests in China and America. The dynamic accumulation indicated that increasing atmospheric Hg concentration and enhancing tree productivity contributed to rising Hg assimilation in remote alpine forests, particularly after the 1960s. Our results highlight the relatively high levels of Hg pools in aboveground tree tissues of alpine forest and reveal a significant increase in Hg accumulation. We recommend that when assessing Hg dynamics in forest ecosystems, it is crucial to consider both the variability in atmospheric Hg exposure levels and the forest productivity.


Subject(s)
Environmental Monitoring , Forests , Mercury , Mercury/analysis , Mercury/metabolism , China , Picea/metabolism , Trees , Air Pollutants/analysis , Soil Pollutants/analysis , Soil Pollutants/metabolism , Soil/chemistry
7.
J Cancer ; 15(13): 4081-4094, 2024.
Article in English | MEDLINE | ID: mdl-38947400

ABSTRACT

Background: An increasing number of studies have demonstrated that differentially expressed circular RNAs (circRNAs) play critical roles in carcinogenesis. However, the biological function and clinical significance of hsa_circ_0005927 during gastric carcinogenesis remain unclear. The aim of this study was to investigate the acting mechanism and clinical significance of hsa_circ_0005927 in the invasion and metastasis of gastric cancer (GC). Methods: Hsa_circ_0005927 was detected in GC tissues, plasma and gastric juice from patients with GC, and its correlations with clinicopathological parameters were investigated. Receiver operating characteristic curves, Kaplan-Meier survival curves and a prognostic nomogram model were generated to analyze the diagnostic and prognostic value. Real-time cell analyzer, plate colony formation, and Transwell migration and invasion assays were utilized to assess GC cell proliferation, migration and invasion, respectively. Nucleoplasmic separation was applied to determine the distribution of hsa_circ_0005927 in cells. TargetScan and miRanda software were used for target microRNA (miRNA) prediction. Transcriptome sequencing and bioinformatics analysis were performed to annotate the functions of hsa_circ_0005927 in gastric carcinogenesis and metastasis from an RNomic perspective. Key target genes and immune cell infiltrations were analysed. Results: Hsa_circ_0005927 was found downregulated in high-grade intraepithelial neoplasia (HGIEN) tissues and GC tissues. Hsa_circ_0005927 levels in GC tissues were negatively correlated not only with lymphatic metastasis and distal metastasis but also with overall survival and disease-free survival. As a screening biomarker for GC, plasma hsa_circ_0005927 levels significantly increased in the early stages of GC, with a sensitivity and specificity of 52.38% and 76.19%, respectively. Hsa_circ_0005927 was mainly distributed in the cytoplasm, and structurally, it possesses multiple miRNA response elements (MREs) that interact with five miRNAs. A total of 421 downstream target genes of hsa_circ_0005927 were identified by transcriptome sequencing; and bioinformatics analysis suggested that these genes were involved mainly in the negative regulation of the T-cell apoptotic process, the interleukin-27-mediated signaling pathway, growth factor activity, guanylate cyclase activity, transcriptional misregulation in cancer, the cGMP-PKG signaling pathway, and the GnRH signaling pathway during gastric carcinogenesis and metastasis. GUCY1A2 and STK32A are key target genes significantly associated with immune infiltration. Conclusion: Our study revealed that hsa_circ_0005927 is a new player related to the invasion and metastasis of GC and is a potential indicator for early GC screening.

8.
J Hazard Mater ; 477: 135306, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39067291

ABSTRACT

Mercury (Hg), a global contaminant, can sink into cryosphere and be released into runoff through meltwater. The Tibetan Plateau (TP) has been witnessing ongoing shrinkage of alpine glaciers. However, the export of Hg from melting glacier is still sparsely reported. From October 16, 2020 to October 15, 2021, we conducted daily observations to study the variation in total Hg concentrations and its export to the Mingyong River, a glacier-fed river in southeastern TP. Results showed that the Hg concentrations were high during the monsoon season but low during the non-monsoon period. The Hg in runoff correlated with the concentrations of total suspended particulates (TSP) and dissolved inorganic carbon (DIC) during both monsoon and non-monsoon seasons (p < 0.01), and the correlation of Hg with other parameters showed seasonal variations. The input from meltwater, precipitation, and groundwater to riverine Hg were 8.3 g, 264.4 g, and 71.0 g, respectively, and the total export was 211.0 g (yield: 4.3 g/km2/year) in the hydrological year, indicating that Mingyong catchment act as a sink for Hg. For the entire TP, the annual export of Hg from glacier runoff was estimated to be 947.7 kg/year. Our study highlights the necessity for further investigations on Hg dynamics to understand the changes in the Hg cycle within glaciated aquatic ecosystems.

9.
Oncogene ; 43(28): 2160-2171, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38783100

ABSTRACT

It has been demonstrated that tRNA-derived small RNAs (tsRNAs) perform essential functions in the pathophysiology of cancer. In this study, we focused on the possible mechanisms of tRF-33-P4R8YP9LON4VDP (tRF-33) underlying the development of gastric malignancy. In total, 454 tissue samples with different gastric mucosal lesions were collected. The tRF-33 expression level in different cohorts was determined, and its value for diagnostic efficiency and prognosis evaluation were assessed. Cell proliferation assays, Transwell assay, flow cytometry, and xenotransplantation model were used to evaluate its effect on gastric cancer cells. The molecular mechanism was verified by fluorescence in situ hybridization, dual luciferase assay, Western blot, and RNA binding protein immunoprecipitation. The results showed that the expression of tRF-33 exhibited a gradual modification from normal control samples to gastritis tissues, early and latent stage of gastric cancer tissues. Consequently, tRF-33 holds significant potential as a predictive and diagnostic biomarker for gastric malignancy. Over-expression of tRF-33 inhibited gastric cancer cell progression and metastatic viability, and induced cell apoptosis. Tumorigenicity in nude mice showed the suppressive characteristics of tRF-33. Mechanistic investigation revealed that tRF-33 exerted silencing on STAT3 mRNA via binding to AGO2. In conclusion, tRF-33 exhibited values in diagnosing gastric cancer and evaluating its prognosis, and suppressed tumor cell viability by inhibiting STAT3 signaling pathway. The schematic mechanisms underlying tRF-33 regulating gastric cancer occurrence. tRF-33 binds to AGO2 proteins and then negatively regulates STAT3 expression through targeting its 3'UTR. The downregulated expression of STAT3 results in the decrease of STAT3 and p-STAT3 and further blocks the transcription of the downstream genes and finally inhibits the gastric cancer occurrence. MMP-9, matrix metalloproteinase-9; Bcl-2, B-cell lymphoma-2; STAT3, signal transducer and activator of transcription 3; UTR, untranslated region.


Subject(s)
Argonaute Proteins , Cell Proliferation , Gene Expression Regulation, Neoplastic , Mice, Nude , STAT3 Transcription Factor , Signal Transduction , Stomach Neoplasms , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Humans , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Animals , Signal Transduction/genetics , Mice , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Disease Progression , Male , Apoptosis/genetics , Female , Prognosis , Mice, Inbred BALB C
10.
Sci Total Environ ; 932: 173135, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38734088

ABSTRACT

The transboundary mercury (Hg) pollution has caused adverse effects on fragile ecosystems of the Tibetan Plateau (TP). Yet, knowledge of transport paths and source regions of atmospheric Hg on the inland TP remains poor. Continuous measurements of atmospheric total gaseous mercury (TGM) were conducted in the central TP (Tanggula station, 5100 m a.s.l., June-October). Atmospheric TGM level at Tanggula station (1.90 ± 0.30 ng m-3) was higher than the background level in the Northern Hemisphere. The identified high-potential source regions of atmospheric TGM were primarily located in the northern South Asia region. TGM concentrations were lower during the Indian summer monsoon (ISM)-dominant period (1.81 ± 0.25 ng m-3) than those of the westerly-receding period (2.18 ± 0.40 ng m-3) and westerly-intensifying period (1.91 ± 0.26 ng m-3), contrary to the seasonal pattern in southern TP. The distinct TGM minima during the ISM-dominant period indicated lesser importance of ISM-transported Hg to Tanggula station located in the northern boundary of ISM intrusion, compared to stations in proximity to South and Southeast Asia source regions. Instead, from the ISM-dominant period to the westerly-intensifying period, TGM concentrations showed an increasing trend as westerlies intensified, indicating the key role of westerlies in transboundary transport of atmospheric Hg to the inland TP.

11.
J Cancer ; 15(10): 3045-3064, 2024.
Article in English | MEDLINE | ID: mdl-38706913

ABSTRACT

Gastric cancer is a prevalent malignancy that poses a serious threat to global health. Despite advances in medical technologies, screening methods, and public awareness, gastric cancer remains a significant cause of morbidity and mortality worldwide. Early gastric cancer frequently does not present with characteristic symptoms, while advanced stage disease is characterized by a dismal prognosis. As such, early screening in gastric cancer is of great importance. In recent years, advances have been made globally in both clinical and basic research for the screening of early gastric cancer. The current predominant screening methods for early gastric cancer include imaging screening, endoscopic screening and serum biomarker screening. Imaging screening encompasses upper gastrointestinal barium meal, multidimensional spiral computed tomography (MDCT), Magnetic resonance imaging (MRI), and ultrasonography. Endoscopic screening methods include white light endoscopy, chromoendoscopy, computed virtual chromoendoscopy, and other endoscopic techniques like endocytoscopy, confocal laser endomicroscopy, optical coherence tomography and so on. Biomarkers screening involves the assessment of conventional biomarkers such as CEA, CA19-9 and CA72-4 as well as more emerging biomarkers such as peptides (PG, G-17, GCAA, TAAs and others), DNA (cfDNA, DNA methylation, MSI), noncoding RNA (miRNA, lncRNA, circRNA, and tsRNA) and others. Each screening method has its strengths and limitations. This article systematically summarizes worldwide progress and future development of early gastric cancer screening methods to provide new perspectives and approaches for early diagnostic and treatment advancements in gastric cancer worldwide.

12.
DNA Cell Biol ; 43(5): 232-244, 2024 May.
Article in English | MEDLINE | ID: mdl-38513058

ABSTRACT

Numerous studies have shown that circular RNAs are associated with the occurrence and development of various cancers, but the biological functions and mechanisms of hsa_circ_0006847 (circASPHD1) in gastric cancer (GC) remain unclear. The expression of hsa_circ_0006847 in GC cell lines, tissue, and plasma from GC patients was assayed by quantitative real-time reverse transcription-polymerase chain reaction. Hsa_circ_0006847 expression in cells was downregulated or upregulated by transfected small interfering RNA (siRNA) or overexpression plasmid. The role of hsa_circ_0006847 in GC was investigated with Cell Counting Kit-8, EdU, Transwell, flow cytometry assays, and in a subcutaneous xenograft tumor model. In addition, the interaction of eukaryotic translation initiation factor 4A3 (EIF4A3) and hsa_circ_0006847 was determined with western blot, biotin-labeled RNA pull-down, and RNA immunoprecipitation assays. Co-immunoprecipitation and mass spectrometry were used to validate the combination of EIF4A3 and synaptopodin-2 (SYNPO2). The expression of hsa_circ_0006847 was decreased in GC tissues and cells and indicated poor survival and prognosis. Overexpression of hsa_circ_0006847 inhibited cell proliferation, migration, and invasion. Flow cytometry showed that upregulation of hsa_circ_0006847 resulted in promotion of apoptosis of GC cells and inhibited their progression through the G0/G1 phase. Downregulation of hsa_circ_0006847 expression had the opposite effects. Overexpression of hsa_circ_0006847 in subcutaneous tumor xenografts inhibited tumor growth. Mechanically, hsa_circ_0006847 promoted the binding of EIF4A3 to SYNPO2 by recruiting EIF4A3, which inhibited the growth of GC. The tumor suppressor activity of hsa_circ_0006847, inhibition of the occurrence and development of GC, was mediated by promotion of EIF4A3 and the binding of EIF4A3 to SYNPO2. The results support the study of hsa_circ_0006847 as a novel therapeutic target for the treatment of GC.


Subject(s)
Cell Proliferation , Eukaryotic Initiation Factor-4A , Mice, Nude , RNA, Circular , Stomach Neoplasms , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Humans , Eukaryotic Initiation Factor-4A/metabolism , Eukaryotic Initiation Factor-4A/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , Animals , Cell Proliferation/genetics , Cell Line, Tumor , Mice , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Female , Male , Apoptosis/genetics , Mice, Inbred BALB C , Middle Aged , DEAD-box RNA Helicases
13.
Dig Dis Sci ; 69(4): 1200-1213, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38400886

ABSTRACT

BACKGROUND: Circular RNAs (CircRNAs) play essential roles in cancer occurrence as regulatory RNAs. However, circRNA-mediated regulation of gastric cancer (GC) remains poorly understood. AIM: The purpose of this study was to investigate the molecular mechanism of circSLC22A23 (hsa_circ_0075504) underlying GC occurrence. METHODS: CircSLC22A23 levels were first quantified by quantitative real-time reverse transcription-polymerase chain reaction in GC cell lines, 80 paired GC tissues and adjacent normal tissues, and 27 pairs of plasma samples from preoperative and postoperative patients with GC. Then circSLC22A23 was knocked-down with short hairpin RNA to analyze its oncogenic effects on the proliferation, migration, and invasion of GC cells. Finally, circRNA-binding proteins and their downstream target genes were identified by RNA pulldown, mass spectrometry, RNA immunoprecipitation, quantitative real-time reverse transcription-polymerase chain reaction, and Western blot assays. RESULTS: CircSLC22A23 was found to be highly expressed in GC cells, GC tissues, and plasma from GC patients. Knockdown of circSLC22A23 inhibited GC cell proliferation, migration and invasion. RNA pulldown and RNA immunoprecipitation assays verified the interaction between circSLC22A23 and heterogeneous nuclear ribonucleoprotein U (HNRNPU). Knockdown of circSLC22A23 decreased HNRNPU protein levels. Moreover, rescue assays showed that the tumor suppressive effect of circSLC22A23 knockdown was reversed by HNRNPU overexpression. Finally, epidermal growth factor receptor (EGFR) was found to be one of the downstream target genes of HNRNPU that was up regulated by circSLC22A23. CONCLUSION: CircSLC22A23 regulated the transcription of EGFR through activation of HNRNPU in GC cells, suggesting that circSLC22A23 may serve as a potential therapeutic target for the treatment of GC.


Subject(s)
MicroRNAs , RNA, Circular , Stomach Neoplasms , Humans , Cell Line, Tumor , Cell Proliferation/genetics , ErbB Receptors/metabolism , Gene Expression Regulation, Neoplastic , Heterogeneous-Nuclear Ribonucleoprotein U/genetics , Heterogeneous-Nuclear Ribonucleoprotein U/metabolism , MicroRNAs/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Small Interfering , Stomach Neoplasms/pathology , Organic Anion Transporters/genetics
14.
Orthop Res Rev ; 16: 21-33, 2024.
Article in English | MEDLINE | ID: mdl-38292459

ABSTRACT

Knee osteoarthritis (KOA) stands as a degenerative ailment with a substantial and escalating prevalence. The practice of traditional Chinese non-pharmacological therapy has become a prevalent complementary and adjunctive approach. A mounting body of evidence suggests its efficacy in addressing KOA. Recent investigations have delved into its underlying mechanism, yielding some headway. Consequently, this comprehensive analysis seeks to encapsulate the clinical application and molecular mechanism of traditional Chinese non-pharmacological therapy in KOA treatment. The review reveals that various therapies, such as acupuncture, electroacupuncture, warm needle acupuncture, tuina, and acupotomy, primarily target localized knee components like cartilage, subchondral bone, and synovium. Moreover, their impact extends to the central nervous system and intestinal flora. More perfect experimental design and more comprehensive research remain a promising avenue in the future.

15.
Environ Pollut ; 342: 123071, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38070642

ABSTRACT

Mercury (Hg) has received increasing public attention owing to its high toxicity and global distribution capability via long-range atmospheric transportation. Guanzhong Basin (GB) is vital for the industrial and economic development of Shaanxi Province. To determine the concentration, spatial distribution, seasonal variation, sources, and health risks of particulate-bound mercury (PBM), PM2.5 samples were collected at three sampling sites representing urban, rural, and remote areas during winter and summer in GB. The three sampling sites were in Xi'an (XN), Taibai (TB), and the Qinling Mountains (QL). The mean PBM concentrations in XN, TB, and QL in winter were 130 ± 115 pg m-3, 57.5 ± 47.3 pg m-3, and 53.6 ± 38.5 pg m-3, respectively, higher than in summer (13.7 ± 7.11 pg m-3, 8.01 ± 2.86 pg m-3, and 7.75 ± 2.85 pg m-3, respectively). PBM concentrations are affected by precipitation, meteorological conditions (temperature and mixed boundary layer), emission sources, and atmospheric transport. During the sampling period, the PBM dry deposition in XN, TB, and QL was 1.90 µg m-2 (2 months), 0.835 µg m-2 (2 months), and 0.787 µg m-2 (2 months), respectively, lower than the range reported in national megacities. According to backward trajectory and potential source contribution factor (PSCF) analysis, mercury pollution in XN is mainly affected by local pollution source emissions, whereas the polluted air mass in TB and QL originates from local anthropogenic emissions and long-distance atmospheric transmission. The non-carcinogenic health risk values of PBM in XN, TB, and QL in winter and summer were less than 1, indicating that the risk of atmospheric PBM to the health of the residents was negligible.


Subject(s)
Air Pollutants , Mercury , Air Pollutants/analysis , Environmental Monitoring , Mercury/analysis , Environmental Pollution/analysis , Seasons , Risk Assessment , Particulate Matter/analysis , China
16.
Sci Total Environ ; 912: 168555, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-37979855

ABSTRACT

Natural processes and human activities impact mercury (Hg) pollution in rivers. Investigating the individual contributions and interactions of factors affecting variations in Hg concentrations, particularly under climate change, is crucial for safeguarding watershed ecosystems and human health. We collected 381 water samples from China's Weihe River Basin (WRB) during dry and wet seasons to assess the total Hg (THg) concentration. Results revealed high Hg concentrations in the WRB (0.1-2200.9 ng/L, mean 126.2 ± 335.5 ng/L), with higher levels during the wet season (wet season: 249.1 ± 453.5 ng/L, dry season: 12.7 ± 14.0 ng/L), particularly in the mainstream and southern tributaries of the Weihe River. Industrial pollution (contributing 26.2 %) and precipitation (contributing 33.5 %) drove spatial heterogeneity in THg concentrations during the dry and wet seasons, respectively. Notably, combined explanatory power increased to 47.9 % when interaction was considered, highlighting the amplifying effect of climate change, particularly precipitation, on the impact of industrial pollution. The middle and downstream of the Weihe River, especially the Guanzhong urban agglomeration, were identified as high-risk regions for Hg pollution. With ongoing climate change the risk of Hg exposure in the WRB is expected to escalate. This study lays a robust scientific foundation for the effective management of Hg pollution in analogous river systems worldwide.

17.
Environ Int ; 180: 108216, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37738696

ABSTRACT

Rivers are important sources of Hg for adjacent seas, and seafood from nearshore waters is a major source of Hg exposure for humans. There is thus a key scientific concern regarding how much riverine Hg inputs influence Hg loads in nearshore waters as well as how far the impact range can extend from the river to the open sea. In addition, it is important to understand the influence of anthropogenic hydro-facilities and activities on Hg levels in downstream seas. Because of the concise mass exchange pattern between the seas and the previously demonstrated intensive Hg inputs under anthropogenic regulation from the Yellow River, the Bohai and Yellow Seas, which are key fishery and marine breeding areas for China, are an ideal research area for exploring the impacts of riverine Hg on nearshore and adjacent open seas. Field surveys were conducted in eight major rivers and two seas, and 433 water samples were collected. The main Hg input and output terms (rivers, ocean currents, underground discharge, sewage, coastal erosion, atmospheric deposition, surface evasion, sedimentation, and fisheries) were quantified in the Bohai and Yellow Seas. Owing to the high inputs from the Yellow and Yalu Rivers, elevated THg concentrations were found. Apart from direct MeHg discharge, riverine nutrients may also seemingly affect nearshore MeHg. Using mass balance models, we found that the Yellow River (9.8 t) was the dominant Hg source in the Bohai Sea, which accounted for more than half of all contributions, and the Bohai Sea played the role of a secondary source of Hg to the Yellow Sea, with a flux of 3.3 t. Anthropogenic hydro-activities in large rivers could significantly influence Hg outputs and loads in the nearshore and even open seas. This study provides useful information for water resource management applications to reduce potential MeHg risks.

18.
Exp Biol Med (Maywood) ; 248(13): 1095-1102, 2023 07.
Article in English | MEDLINE | ID: mdl-37387464

ABSTRACT

Gastric cancer (GC) is a particularly malignant disease; thus, early diagnosis and treatment are especially important. Transfer RNA-derived small RNAs (tsRNAs) have been implicated in the onset and progression of various cancers. Therefore, the aim of this study was to explore the role of tRF-18-79MP9P04 (previously named tRF-5026a) in the onset and progression of GC. Expression levels of tRF-18-79MP9P04 were quantified in gastric mucosa specimens of healthy controls and plasma samples of patients with different stages of GC. The results showed that plasma levels of tRF-18-79MP9P04 were significantly decreased in the early and advanced stages of GC. The results of the nucleocytoplasmic separation assay found that tRF-18-79MP9P04 was localized in the nuclei of GC cells. High-throughput transcriptome sequencing identified genes regulated by tRF-18-79MP9P04 in GC cells, and the function of tRF-18-79MP9P04 was predicted by bioinformatics. Collectively, the findings of this study suggest that tRF-18-79MP9P04 would be useful as non-invasive biomarker for early diagnosis of GC and is related to cornification, the type I interferon signaling pathway, RNA polymerase II activities, and DNA binding.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/diagnosis , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , Biomarkers
19.
Front Oncol ; 13: 1106997, 2023.
Article in English | MEDLINE | ID: mdl-37139153

ABSTRACT

Background: The transition from a healthy gastric mucosa to gastric cancer is a multi-step process. Early screening can significantly improve the survival rate of gastric cancer patients. A reliable liquid biopsy for gastric cancer prediction is urgently needed and since tRNA-derived fragments (tRFs) are abundant in various body fluids, tRFs are possible new biomarkers for gastric cancer. Methods: A total of 438 plasma samples from patients with different gastric mucosal lesions as well as healthy individuals were collected. A specific reverse transcription primer, a forward primer, a reverse primer, and a TaqMan probe were designed. A standard curve was constructed and an absolute quantitation method was devised for detection of tRF-33-P4R8YP9LON4VDP in plasma samples of individuals with differing gastric mucosa lesions. Receiver operating characteristic curves were constructed to evaluate the diagnostic values of tRF-33-P4R8YP9LON4VDP for individual with differing gastric mucosa. A Kaplan-Meier curve was established to calculate the prognostic value of tRF-33-P4R8YP9LON4VDP for advanced gastric cancer patients. Finally, a multivariate Cox regression analysis was performed to assess the independent prognostic value of tRF-33-P4R8YP9LON4VDP for advanced gastric cancer patients. Results: A detection method for plasma tRF-33-P4R8YP9LON4VDP was successfully established. Levels of plasma tRF-33-P4R8YP9LON4VDP were shown to reflect a gradient change from healthy individuals to gastritis patients to early and advanced gastric cancer patients. Significant differences were found among individuals with differing gastric mucosa, with reduced levels of tRF-33-P4R8YP9LON4VDP significantly related to a poor prognosis. tRF-33-P4R8YP9LON4VDP was found to be an independent predictor of an unfavorable survival outcome. Conclusions: In this study, we developed a quantitative detection method for plasma tRF-33-P4R8YP9LON4VDP that exhibited hypersensitivity, convenience, and specificity. Detection of tRF-33-P4R8YP9LON4VDP was found to be a valuable means by which to monitor different gastric mucosa and to predict patient prognosis.

20.
Discov Oncol ; 14(1): 60, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37154831

ABSTRACT

Hepatocellular carcinoma (HCC) is characterized by high morbidity and mortality, and a low 5-year survival rate. Exploring the potential molecular mechanisms, finding diagnostic biomarkers with high sensitivity and specificity, and determining new therapeutic targets for HCC are urgently needed. Circular RNAs (circRNAs) have been found to play a key role in the occurrence and development of HCC, while exosomes play an important role in intercellular communication; thus, the combination of circRNAs and exosomes may have inestimable potential in early diagnosis and curative therapy. Previous studies have shown that exosomes can transfer circRNAs from normal or abnormal cells to surrounding or distant cells; thereafter, circRNAs influence target cells. This review summarizes the recent progress regarding the roles of exosomal circRNAs in the diagnosis, prognosis, occurrence and development and immune checkpoint inhibitor and tyrosine kinase inhibitor resistance of HCC to provide inspiration for further research.

SELECTION OF CITATIONS
SEARCH DETAIL