Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 26
1.
BMC Med Genomics ; 17(1): 119, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702677

BACKGROUND: Gastric cancer (GC) is a prevalent type of malignant gastrointestinal tumor. Many studies have shown that CENPE acts as an oncogene in some cancers. However, its expression level and clinical value in GC are not clear. METHODS: Obtaining clinical data information on gastric adenocarcinoma from TCGA and GEO databases. The gene expression profiling interaction analysis (GEPIA) was used to evaluate the relationship between prognosis and CENPE expression in gastric cancer patients. Utilizing the UALCAN platform, the correlation between CENPE expression and clinical parameters was examined. Functions and signaling pathways of CENPE were analyzed using the Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA). The association between immunological infiltrating cells and CENPE expression was examined using TIMER2.0. Validation was performed by real-time quantitative PCR (qPT-PCR) and immunohistochemical analysis. RESULTS: According to the analysis of the GEPIA database, the expression of CENPE is increased in gastric cancer tissues compared to normal tissues. It was also found to have an important relationship with the prognosis of the patient (p<0.05). The prognosis was worse and overall survival was lower in individuals with increased expression of CENPE. In line with the findings of the GEPIA, real-time fluorescence quantitative PCR (qPT-PCR) confirmed that CENPE was overexpressed in gastric cancer cells. Furthermore, It was discovered that H. pylori infection status and tumor grade were related to CENPE expression. Enrichment analysis revealed that CENPE expression was linked to multiple biological functions and tumor-associated pathways. CENPE expression also correlated with immune-infiltrating cells in the gastric cancer microenvironment and was positively connected to NK cells and mast cells. According to immunohistochemical examination, paracancerous tissues had minimal expression of CENPE, but gastric cancer showed significant expression of the protein. CONCLUSIONS: According to our findings, CENPE is substantially expressed in GC and may perhaps contribute to its growth. CENPE might be a target for gastric cancer therapy and a predictor of a bad prognosis.


Stomach Neoplasms , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Humans , Prognosis , Male , Gene Expression Regulation, Neoplastic , Female , Gene Expression Profiling , Middle Aged , Biomarkers, Tumor/genetics , Clinical Relevance
2.
J Cancer Res Clin Oncol ; 150(5): 230, 2024 May 04.
Article En | MEDLINE | ID: mdl-38703300

OBJECTIVES: Gastric cancer (GC) is a prevalent malignant tumor widely distributed globally, exhibiting elevated incidence and fatality rates. The gene LAMC2 encodes the laminin subunit gamma-2 chain and is found specifically in the basement membrane of epithelial cells. Its expression is aberrant in multiple types of malignant tumors. This research elucidated a link between LAMC2 and the clinical characteristics of GC and investigated the potential involvement of LAMC2 in GC proliferation and advancement. MATERIALS AND METHODS: LAMC2 expressions were detected in GC cell lines and normal gastric epithelial cell lines via qRT-PCR. Silencing and overexpression of the LAMC2 were conducted by lentiviral transfection. A xenograft mouse model was also developed for in vivo analysis. Cell functional assays were conducted to elucidate the involvement of LAMC2 in cell growth, migration, and penetration. Further, immunoblotting was conducted to investigate the impact of LAMC2 on the activation of signal pathways after lentiviral transfection. RESULTS: In the findings, LAMC2 expression was markedly upregulated in GC cell lines as opposed to normal gastric epithelial cells. In vitro analysis showed that sh-LAMC2 substantially inhibited GC cell growth, migration, and invasion, while oe-LAMC2 displayed a contrasting effect. Xenograft tumor models demonstrated that oe-LAMC2 accelerated tumor growth via high expression of Ki-67. Immunoblotting analysis revealed a substantial decrease in various signaling pathway proteins, PI3K, p-Akt, and Vimentin levels upon LAMC2 knockdown, followed by increased E-cadherin expression. Conversely, its overexpression exhibited contrasting effects. Besides, epithelial-mesenchymal transition (EMT) was accelerated by LAMC2. CONCLUSION: This study provides evidence indicating that LAMC2, by stimulating signaling pathways, facilitated EMT and stimulated the progression of GC cells in laboratory settings and mouse models. Research also explored that the abnormal LAMC2 expression acts as a biomarker for GC.


Cell Proliferation , Laminin , Neoplasm Invasiveness , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Stomach Neoplasms , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Humans , Animals , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Mice , Laminin/metabolism , Cell Line, Tumor , Mice, Nude , Epithelial-Mesenchymal Transition , Cell Movement , Female , Male , Mice, Inbred BALB C , Neoplasm Metastasis , Xenograft Model Antitumor Assays , Gene Expression Regulation, Neoplastic
3.
Arch Biochem Biophys ; 754: 109896, 2024 Apr.
Article En | MEDLINE | ID: mdl-38417691

AIMS: The purpose of this study was to explore the role of RAE1 in the invasion and metastasis of gastric cancer (GC) cells. MATERIALS AND METHODS: RAE1 expression in GC cells was determined by reverse-transcription polymerase chain reaction (qRT-PCR) and Western blotting (WB). Cell models featuring RAE1 gene silencing and overexpression were constructed by lentiviral transfection; The proliferation, migration, and invasion ability of cells were detected by cell counting, colony formation assay, would healing assay, and transwell invasion and migration test. WB analysis of ERK/MAPK signaling pathway (ERK1/2, p-ERK1/2, c-Myc) and EMT-related molecules (ZEB1, E-cadherin, N-cadherin, and Vimentin). RESULTS: The expression level of RAE1 in GC was notably higher than in adjacent tissues. Elevated RAE1 expression correlated with an unfavorable prognosis for GC patients. Knockdown of RAE1, as compared to the control group, resulted in a significant inhibition of proliferation, migration, and invasion abilities in GC cell lines. Furthermore, RAE1 knockdown led to a substantial decrease in the expression of N-cadherin, vimentin, ZEB1, p-ERK1/2, and c-Myc proteins, coupled with a marked increase in E-cadherin expression. The biological effects of RAE1 in GC cells were effectively reversed by the inhibition of the ERK/MAPK signaling pathway using SCH772984. Additionally, RAE1 knockdown demonstrated a suppressive effect on GC tumor size in vivo. Immunohistochemistry (IHC) results revealed significantly lower expression of Ki-67 in RAE1 knockout mice compared to the control group. CONCLUSIONS: RAE1 promotes GC cell migration and invasion through the ERK/MAPK pathway and is a potential therapeutic target for GC therapy.


Epithelial-Mesenchymal Transition , Stomach Neoplasms , Animals , Humans , Mice , Cadherins/genetics , Cadherins/metabolism , Carcinogenesis , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Neoplasm Invasiveness/genetics , Nuclear Matrix-Associated Proteins/genetics , Nuclear Matrix-Associated Proteins/metabolism , Nucleocytoplasmic Transport Proteins/genetics , Nucleocytoplasmic Transport Proteins/metabolism , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Vimentin/genetics , Vimentin/metabolism
4.
Front Immunol ; 14: 1179014, 2023.
Article En | MEDLINE | ID: mdl-37234174

Type 2 diabetes (T2DM) clinically exhibits a higher incidence of hepatocellular carcinoma (HCC), contributing to a lousy prognosis in patients harboring both diseases. Microflora-based therapy draws attention with low side effects. Accumulating evidence shows that Lactobacillus brevis can improve blood glucose and body weight of the T2DM mice model and reduce several cancer incidences. However, the therapeutic effect of Lactobacillus brevis in affecting the prognosis of T2DM+HCC remains unknown. In this study, we aim to explore this question via an established T2DM+HCC mice model. We observed a significant alleviation after the probiotic intervention. Lactobacillus brevis improves blood glucose and insulin resistance and ameliorates Mechanically. Combined with a multi-omics approach including 16SrDNA, GC-MS, and RNA-seq, we identified distinct intestinal microflora composition and metabolites after Lactobacillus brevis intervention. Furthermore, we found that Lactobacillus brevis delayed disease progression by regulating MMP9 and NOTCH 1 signaling pathways, potentially through gut microflora and BA interaction. This study indicates that Lactobacillus brevis may improve the prognosis of T2DM + HCC, providing novel therapeutic opportunities via targeting intestinal flora for patients with T2DM+HCC.


Carcinoma, Hepatocellular , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Levilactobacillus brevis , Liver Neoplasms , Mice , Animals , Carcinoma, Hepatocellular/therapy , Bile Acids and Salts , Blood Glucose , Liver Neoplasms/therapy , Disease Models, Animal
5.
Oxid Med Cell Longev ; 2022: 6570879, 2022.
Article En | MEDLINE | ID: mdl-36120598

Objective: In the development of many tumors, IPO5, as a member of the nuclear transporter family, exerts a significant function. Also, IPO5 is used as a therapeutic target for tumors based on some reports. By studying IPO5 expression in esophageal cancer tissues, the mechanism associated with IPO5 improving esophageal cancer development was explored in this study. Methods: To gain differentially expressed genes, this study utilized mRNA microarray and TCGA database for comprehensive analysis of esophageal cancer tissues and normal esophageal cancer tissues, and then the differentially expressed gene IPO5 was screened by us. To assess esophageal cancer patients' prognosis, this study also applied the Kaplan-Meier analysis, and we also conducted the GSEA enrichment analysis to investigate IPO5-related signaling pathways. This study performed TISIDB and TIMER online analysis tools to study the correlation between IPO5 and immune regulation and infiltration. We took specimens of esophageal cancer from patients and detected the expression of IPO5 in tumor and normal tissues by immunohistochemistry. The IPO5 gene-silenced esophageal cancer cell model was constructed by lentivirus transfection. Through the Transwell invasion assay, CCK-8 assay, and cell scratch assay, this study investigated the effects of IPO5 on cell propagation, invasion, and transfer. What is more, we identified the influences of IPO5 on the cell cycle through flow cytometry and established a subcutaneous tumor-forming model in nude mice. Immunohistochemistry was used to verify the expression of KI-67, and this study detected the modifications of cell pathway-related proteins using Western blot and applied EMT-related proteins to explain the mechanism of esophageal cancer induced by IPO5. Results: According to database survival analysis, IPO5 high-expression patients had shorter disease-free survival than IPO5 low-expression patients. Compared to normal tissues, the IPO5 expression in cancer tissues was significantly higher in clinical trials (P < 0.05). Through TISIDB and TIMER database studies, we found that IPO5 could affect immune regulation, and the age of IPO5 expression grows with the increase of immune infiltration level. The IPO5 expression in esophageal cancer cells was higher than normal, especially in ECA109 and OE33 cells (P < 0.01). After knocking out IPO5 gene expression, cell proliferation capacity and invasion capacity were reduced (P < 0.05) and decreased (P < 0.01) in the IPO5-interfered group rather than the negative control group. The growth cycle of esophageal carcinoma cells was arrested in the G2/M phase after IPO5 gene silencing (P < 0.01). Tumor-forming experiments in nude mice confirmed that after IPO5 deletion, the tumor shrank, the expression of KI67 decreased, the downstream protein expression level of the RAS pathway decreased after sh-IPO5 interference (P < 0.01), and the level of EMT marker delined (P < 0.05). Conclusion: In esophageal cancer, IPO5 is highly expressed and correlates with survival rate. Esophageal cancer cell growth and migration were significantly affected by the inhibition of IPO5 in vitro and in vivo. IPO5 mediates EMT using the RAS-ERK signaling pathway activation and promotes esophageal cancer cell development in vivo and in vitro.


Esophageal Neoplasms , MAP Kinase Signaling System , Animals , Cell Line, Tumor , Esophageal Neoplasms/genetics , Ki-67 Antigen/metabolism , Mice , Mice, Nude , RNA, Messenger/metabolism
6.
J Gastrointest Oncol ; 13(1): 102-116, 2022 Feb.
Article En | MEDLINE | ID: mdl-35284124

Background: Gastric cancer is one of the most common malignant tumors in the world, which brings great challenges to people's life and health. The purpose of this study was to investigate immune related-lncRNAs and identify new biomarkers for the prognosis of gastric cancer (GC). Methods: We downloaded data from The Cancer Genome Atlas (TCGA) and used R software to determine the ESTIMATEScore, ImmuneScore, and StromalScore of each tumor sample. We performed prognostic analysis and identified the differentially expressed lnRNAs, which were then used to construct a prognostic model. Among the 44 hub genes in the competitive endogenous RNA (ceRNA) network, 3 differentially expressed genes were verified by qPCR. Results: Based on the degree of immune infiltration, cluster A had a higher ESTIMATEScore, ImmuneScore, and StromalScore and higher expression levels of PD-L1 (CD274) and CTLA4 than cluster B. Univariate Cox analysis was conducted for these differential lncRNAs, and 57 lncRNAs were found to have prognostic value (P<0.05). gene cluster A had a worse prognosis than gene cluster B (P=0.021). Then, a prognostic model was constructed. The low-risk group had a significantly higher survival rate. Finally, the qPCR results showed that the expression levels of BMPER, PRUNE2, and RBPMS2 were low in GC cell lines. Conclusions: We identified a risk score of 19 lncRNAs as a prognostic marker of GC. There was a relationship between these 19 prognostic-related lncRNAs and the subtypes of infiltrating immune cells. An approach for predicting the prognosis of GC was therefore provided in this study.

7.
Int J Gen Med ; 15: 1919-1931, 2022.
Article En | MEDLINE | ID: mdl-35237066

BACKGROUND: Long non-coding RNA (lncRNA) plays an essential regulatory role in the occurrence and development of hepatocellular carcinoma (HCC). This paper aims to establish an immune-related lncRNA (irlncRNA) pairs model independent of expression level for risk assessment and prognosis prediction of HCC. METHODS: Transcriptome data and corresponding clinical data were downloaded from TCGA. HCC patients were randomly divided into training group and test group. Univariate Cox regression analysis, LASSO regression analysis, and stepwise multiple Cox regression analysis were used to establish a prognostic model. The prediction ability of the model was verified by ROC curves. Next, the patients were divided into low-risk and high-risk groups. We compared the differences between the two groups in survival rate, clinicopathological characteristics, tumor immune cell infiltration status, chemotherapeutic drug sensitivity and immunosuppressive molecules. RESULTS: A prognosis prediction model was established based on 7 irlncRNA pairs, namely irlncRNA pairs (IRLP). ROC curves of the training group and test group showed that the IRLP model had high sensitivity and specificity for survival prediction. Kaplan-Meier analysis showed that the survival rate of the high-risk group was significantly lower than that of the low-risk group. Immune cell infiltration analysis showed that the high-risk group was significantly correlated with various immune cell infiltration. Finally, there were statistically significant differences in chemosensitivity and molecular marker expression between the two groups. CONCLUSION: The prognosis prediction model established by irlncRNA pairs has a certain guiding significance for the prognosis prediction of HCC. It may provide valuable clinical applications in antitumor immunotherapy.

8.
J Oncol ; 2022: 2647825, 2022.
Article En | MEDLINE | ID: mdl-35132319

The serine protease inhibitor clade E member 1 (SERPINE1) is a major inhibitor of tissue plasminogen activator and urokinase, and has been implicated in the development and progression of a variety of tumors. In this study, mRNA microarray and TCGA database were used to comprehensively analyze the upregulation of SERPINE1 in gastric cancer (GC) tissues compared with the normal stomach tissues. Kaplan-Meier results confirmed that patients with high SERPINE1 expression exhibited worse overall survival and disease-free survival. In addition, cell proliferation, cell scratches, transwell migration and invasion assay showed that SERPINE1 knockdown inhibited the proliferation, migration and invasion of GC ells. Western blot showed that the expression of VEGF and IL-6 was significantly upregulated after overexpression of SERPINE1. Meanwhile, SERPINE1 was positively correlated with the level of immune infiltration using the online analysis tools TISIDB and TIMER. And SERPINE1 expression increased with the increase of malignancy of GC which were detected by Immunohistochemistry. Finally, tumorigenesis experiments in nude mice further demonstrated that SERPINE1 could promote the occurrence and development of GC, while deletion of SERPINE1 inhibited the progression of GC. In summary, SERPINE1 was highly expressed in GC tissues, and SERPINE1 was helpful for differential diagnosis of pathological grade of gastric mucosal lesions. SERPINE1 might regulate the expression of VEGF and IL-6 through the VEGF signaling pathway and JAK-STAT3 inflammatory signaling pathway, thus ultimately affecting the invasion and migration of GC cells.

9.
J BUON ; 26(5): 1931-1941, 2021.
Article En | MEDLINE | ID: mdl-34761602

PURPOSE: Colon adenocarcinoma (COAD) is globally one of the most frequently occurring malignant tumors. The patients' 5-year survival rate with colon cancer was poor. There is a usual form of mRNA modification called N6-methyl adenosine (m6A). It is adjusted by the m6A RNA methylation modulator. Nevertheless, few studies of COAD can fully discuss m6A-related lncRNAs' prognostic function. METHODS: From The Cancer Genome Atlas (TCGA) database, this study of COAD samples discussed 23 m6A regulator-related lncRNAs systemically. 2 m6A patterns with various clinical results were recognized, and a remarkable correlation between various m6A clusters and tumor immune microenvironment was discovered. RESULTS: According to prognostic analysis, cluster1 had a higher immune checkpoint programmed death-ligand 1 (PD-L1) expression and a better prognosis. A 6 m6A-related lncRNAs model was constructed through least absolute shrinkage and selection operator (LASSO), univariate, multivariate Cox regression and stratified analysis. The outcomes reported that compared with the low-risk group, high-risk groups that were based on model closely were related to poor overall survival (OS). The study ensured a risk model consisting of 6 m6A-related lncRNAs as independent prognosis predictors. For the expression differences between the two groups, Genomes Pathway Analysis, Kyoto Encyclopedia of Genes (KEGG) and Gene Ontology (GO) biological process analyses were conducted. In addition, on the basis of full analysis of OS, a nomogram based on gender, age, lncRNA feature and the stage was constructed. One year, two years, and three years are the periods when the calibration chart performed best. CONCLUSIONS: The outcomes of the study confirmed the underlying function of m6A-related lncRNAs and offered fresh perspectives to COAD prognosis.


Adenocarcinoma/immunology , Adenosine/analogs & derivatives , Colonic Neoplasms/immunology , RNA, Long Noncoding/physiology , Adenocarcinoma/genetics , Adenocarcinoma/mortality , Adenosine/genetics , Adenosine/physiology , Colonic Neoplasms/genetics , Colonic Neoplasms/mortality , Humans , Prognosis , Survival Rate
10.
J Gastrointest Oncol ; 12(5): 2132-2149, 2021 Oct.
Article En | MEDLINE | ID: mdl-34790380

BACKGROUND: The Homeobox B (HOXB) family promotes tumor progression, but the mechanism of its action in gastric cancer (GC) is unclear. We sought to identify the HOXB family members that are critical to the prognosis of GC patients. METHODS: The Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), cBioPortal, UALCAN, Kaplan-Meier plotter, and the GeneMANIA databases were used to analyze the messenger RNA (mRNA) expression levels, prognostic value, and gene-gene interaction network of the HOXB9 family members in GC. The expression of HOXB9 in GC and its relationship with various clinicopathological parameters and the prognosis of patients were verified by immunohistochemistry. RESULTS: The expression of HOXB3, HOXB5, HOXB6, HOXB7, HOXB9, and HOXB13 mRNA was significantly upregulated in GC. There was a significant correlation between the upregulation of HOXB3, HOXB5, and HOXB9 mRNA and a low overall survival (OS) rate. The high expression of HOXB7, HOXB9, and HOXB13 mRNA was closely correlated to tumor grade and stage. HOXB9 was the HOXB family member most closely related to the occurrence and development of GC. A further analysis showed that HOXB9 might be involved in deoxyribonucleic acid repair and division regulation. A validation study showed that the advanced cancer group had a higher level of HOXB9 expression than the early cancer group. The high expression of HOXB9 in gastric tissue plays an important role in the survival and prognosis of GC patients. CONCLUSIONS: HOXB family members have different degrees of abnormal expression in GC. High HOXB9 expression in GC tissues was significantly correlated with a worse prognosis. Thus, HOXB9 is a potential novel biomarker and therapeutic target for GC.

11.
J Gastrointest Oncol ; 12(5): 2157-2171, 2021 Oct.
Article En | MEDLINE | ID: mdl-34790382

BACKGROUND: Colon adenocarcinoma (COAD) is one of the most common malignancies worldwide. Genomic instability is one of the hallmarks of colon cancer and is associated with prognosis. Nevertheless, the impact of genome instability-associated long non-coding RNAs (lncRNAs) along with their clinical significance in cancers has remained mostly unexplored. METHODS: In this study, a mutator hypothesis-derived computational frame integrating the somatic mutation profiles and lncRNA expression profiles in a tumor genome was developed, which enabled the identification of 137 novel genomic instability-associated lncRNAs in colon cancer. Subsequently, a genome instability-derived lncRNA signature (GILncSig) segregated the patients into low- and high-risk groups with prominent differences in outcomes. RESULTS: Combined with the overall survival data, we established 6 six lncRNA-based signature to predict prognosis, which were LINC00896, AC007996.1, NKILA, AP003555.2, MIRLET7BHG, and AC009237.14. We found that the expression level of PD-L1 (CD274) and somatic mutations in the high-risk group were higher than those in the low-risk group. This suggests that high-risk patients may be sensitive to immunotherapy. We further found that the prognosis of patients in the high-risk group was significantly lower than that of patients in the low-risk group, and that patients' prognosis was likely to be worse as the patient's risk score increased. CONCLUSIONS: In conclusion, this study explores the role of lncRNAs in genomic instability and cancer prognosis and provides a new idea for the prognostic prediction of colon cancer.

12.
J Gastrointest Oncol ; 12(2): 328-343, 2021 Apr.
Article En | MEDLINE | ID: mdl-34012629

BACKGROUND: In gastric cancer (GC), abnormal adaptive immunity is correlated with chronic inflammatory disorders and poor prognosis. However, the global study of adaptive immunity involving genes expression is insufficient. METHODS: In this study, we investigated the transcriptional profile of adaptive immunity involving genes in GC from TCGA (The Cancer Genome Atlas). The relevance of adaptive immunity and the clinical features of patients with GC were assessed. Differences in gene expression between each feature and the correlation between gene expression and prognosis were elucidated. RESULTS: According to the expressional profile of adaptive immunity-related genes, 412 patients with GC were grouped into two primary classifications and three secondary classifications. There were no differences in prognosis detected between each subgroup. In the immune subgroups, the distributions of pathological type were obviously different. Additionally, histological types, AJCC (American Joint Committee on Cancer) stage features, grade, tumor stage, aneuploidy score, and fraction genome altered in different subgroups were significantly discrepant. There were 95 differently expressed genes (DEGs) detected between each histological type, which were represented by LAIR1, BTK and LAT2. According to identification of DEGs in the MSTAD (mucinous stomach adenocarcinoma) and SRCC (signet ring cell carcinoma) types, which were relevant to the best and worst prognosis types, respectively, we constructed a model combining seven genes to recognize the MSTAD type (AUC =0.91) and a model combining six genes to recognize the SRCC type (AUC =0.91). Moreover, the expression of FGL1 gene was notably contrasting among the different histological types, and the high-expression of FGL1 was correlated with a poor prognosis. CONCLUSIONS: This study showed that the expressional patterns of adaptive immunity-related genes are closely related to the histological type of GC, and demonstrated that the expression of immune molecules is correlated to the prognosis. Our results are expected to promote immunological therapy for GC.

13.
Front Pharmacol ; 9: 372, 2018.
Article En | MEDLINE | ID: mdl-29725297

Gastric ulcer (GU) is a main threat to public health. 1-Deoxynojirimycin (DNJ) has antioxidant and anti-inflammatory properties and may prevent GU but related mechanism remains unclear. DNJ was extracted from the supernatants of Bacillus subtilis by using ethanol and purified by using CM-Sepharose chromatography. A GU mouse model was induced by indomethacin. The functional role of DNJ in GU mice was explored by measuring the main molecules in the NF-KappaB pathway. After the model establishment, 40 GU mice were evenly assigned into five categories: IG (received vehicle control), LG (10 µg DNJ daily), MG (20 µg DNJ daily), HG (40 µg DNJ daily), and RG (0.5 mg ranitidine daily). Meanwhile, eight healthy mice were assigned as a control group (CG). After 1-month therapy, weight and gastric volume were investigated. The levels of serum inflammatory cytokines (IL-6 and TNF-α), antioxidant indices [superoxide dismutase (SOD), catalase (CAT), and reduced glutathione (GSH)], and oxidant biomarker malondialdehyde (MDA) were examined via ELISA. Meanwhile, inflammatory cytokine (IL-6 and TNF-α) levels, and key molecules (NF-κB p65), cyclooxygenase 1 (COX-1 and COX2) involved in NF-κB pathway, were analyzed by using Western Blot. COX-1 and COX-2 levels were further measured by immunohistochemistry. The effects of DNJ on gastric functions were explored by measuring the changes of Motilin (MOT), Substance P (SP), Somatostatin (SS), and Vasoactive intestinal peptide (VIP) in GU mouse models with ELISA Kits. The results indicated that DNJ prevented indomethacin-caused increase of gastric volume. DNJ improved histopathology of GU mice when compared with the mice from IG group (P < 0.05). DNJ consumption decreased the levels of IL-6 and TNF-α (P < 0.05). DNJ increased antioxidant indices of GU mice by improving the activities of SOD, CAT and reduced GSH, and reduced MDA levels (P < 0.05). DNJ increased the levels of prostaglandin E2, COX-1, COX2, and reduced the levels of and NF-κB p65 (P < 0.05). DNJ showed protection for gastric functions of GU mice by reducing the levels of MOT and SP, and increasing the levels of SS and VIP. DNJ treatment inactivates NF-κB signaling pathway, and increases anti-ulceration ability of the models.

14.
Front Pharmacol ; 9: 347, 2018.
Article En | MEDLINE | ID: mdl-29695964

Background:Polygonum cuspidatum Siebold & Zucc. (PCS) has antibacterial properties and may prevent Ulcerative colitis (UC) but related molecular mechanism remains unknown. NF-κB signaling pathway is associated with inflammatory responses and its inactivation may be critical for effective therapy of UC. Methods: UC mouse (C57BL/6J) model was established by using dextran sulfate sodium (DSS). The extract of PCS (PCSE) was prepared by using ethanol and its main ingredients were measured by HPLC. Thirty-two UC mice were evenly assigned into DG (received vehicle control), LG (0.1 g/kg PCSE daily), MG (0.2 g/kg PCSE daily) and HG (0.4 g/kg PCSE daily) groups. Meanwhile, 8 healthy mice were assigned as a control group (CG). Serum pharmacokinetics of PCS was measured by using HPLC. After 8-day treatment, weight, colon length and disease activity index (DAI) were measured. Inflammatory cytokines and oxidant biomarkers were measured by ELISA kits. The levels of cytokines, and key molecules in NF-κB pathway, were measured by using Western Blot. The effects of main ingredients of PCSE on cytokines and NF-κB signaling pathway were explored by using intestinal cells of a mouse UC model. The normality criterion was evaluated using the Saphiro-Wilk test. The quantitative variables were compared using the paired Student's-t test. Results: The main ingredients of PCSE were polydatin, resveratrol and emodin. Polydatin may be transformed into resveratrol in the intestine of the mice. PCSE prevented DSS-caused weight loss and colon length reduction, and improved histopathology of UC mice (P < 0.05). PCSE treatment increased the serum levels of IL-10 and reduced the levels of IL-1 beta, IL-6 and TNF-α (P < 0.05). PCSE increased the activities of SOD, CAT, GPX and reduced the level of MDA, BCL-2, beta-arrestin, NF-κB p65 and the activity of MPO (P < 0.05). The combination of polydatin, resveratrol or emodin, and or PCSE exhibited higher inhibitory activities for cytokines and NF-κB signaling related molecules than any one of the three ingredients with same concentration treatment. Conclusion: Oral administration of PCSE suppressed NF-κB signaling pathway and exerts its anti-colitis effects via synergistic effects of polydatin, resveratrol or emodin.

15.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 34(1): 59-64, 2018 Jan.
Article Zh | MEDLINE | ID: mdl-29595459

Objective To investigate the mechanisms of pseudolaric acid B (PAB) blocks cell cycle and inhibits invasion and migration in human hepatoma HepG2 cells. Methods The proliferation effect of PAB on HepG2 cells was evaluated by MTT assay. The effect of PAB on the cell cycle of HepG2 cells was analyzed by flow cytometry. Immunofluorescence cytochemical staining was applied to observe the effect of PAB on the α-tubulin polymerization and expression in HepG2 cells. TranswellTM chamber invasion assay and wound healing assay were performed to detect the influence of PAB on the migration and invasion ability of HepG2 cells. Western blotting was used to determine the expressions of α-tubulin, E-cadherin and MMP-9 in HepG2 cells after treated with PAB. Results PAB inhibited the proliferation of HepG2 cells in a dose-dependent manner and blocked the cell cycle in G2/M phase. PAB significantly changed the polymerization and decreased the expression of α-tubulin. The capacities of invasion and migration of HepG2 cells treated by PAB were significantly depressed. The protein levels of α-tubulin and MMP-9 decreased while the E-cadherin protein level increased. Conclusion PAB can inhibits the proliferation of HepG2 cells by down-regulating the expression of α-tubulin and influencing its polymerization, arresting HepG2 cells in G2/M phase. Meanwhile, PAB also can inhibit the invasion and migration of HepG2 cells by lowering cytoskeleton α-tubulin and MMP-9, and increasing E-cadherin.


Diterpenes/pharmacology , G2 Phase Cell Cycle Checkpoints/drug effects , M Phase Cell Cycle Checkpoints/drug effects , Antigens, CD , Cadherins/analysis , Cell Movement/drug effects , Cell Proliferation/drug effects , Hep G2 Cells , Humans , Neoplasm Invasiveness , Tubulin/metabolism
16.
Oxid Med Cell Longev ; 2017: 7085709, 2017.
Article En | MEDLINE | ID: mdl-28713490

Picroside II, from the herb Picrorhiza scrophulariiflora Pennell, has antioxidant and anti-inflammatory activities. However, its function on severe acute pancreatitis (SAP) and molecular mechanism remains unknown. The effects of picroside II on the SAP induced by cerulean were investigated. SAP rats were treated with picroside II (25 mg/kg). The severity of SAP was evaluated by using biochemical and histological analyses. Pancreatic cancer cell PANC-1 was transfected with ptfLC3 (an indicator of autophagic activity), pcDNA3.1-NF-κB (nuclear factor kappa B), and pTZU6+1-NF-κB-shRNA and then treated with picroside II. Relative molecules related with NF-κB-dependent autophagy were detected by using Western blot. Autophagic activities were observed by phase-contrast and fluorescent microscopes. Acetylated LC3 was detected by immunoprecipitation. The results showed that picroside II treatment reduced the level of ALT, AST, NF-κB, IL-1ß, IL-6, TNF-α, and SIRT1 (NAD+-dependent deacetylase) and increased the level of SOD and GSH. The autophagic activity was reduced when NF-κB was silenced, and the levels of TNF-α and SIRT1 were reduced. In contrast, the overexpression of NF-κB increased autophagic activity and the level of TNF-α, which activated SIRT1. SIRT1 deacetylated LC3 and increased autophagic activities. Picroside II ameliorates SAP by improving antioxidant and anti-inflammtory activities of SAP models via NF-κB-dependent autophagy.


Autophagy/drug effects , Biological Products/therapeutic use , Cinnamates/therapeutic use , Iridoid Glucosides/therapeutic use , NF-kappa B/genetics , Pancreatitis/drug therapy , Acute Disease , Animals , Biological Products/administration & dosage , Biological Products/pharmacology , Cinnamates/administration & dosage , Cinnamates/pharmacology , Iridoid Glucosides/administration & dosage , Iridoid Glucosides/pharmacology , Pancreatitis/pathology , Rats , Rats, Sprague-Dawley , Transfection
17.
Int J Oncol ; 50(5): 1848-1856, 2017 May.
Article En | MEDLINE | ID: mdl-28393220

Multiple drug resistance is reported to be a major obstacle in treatment of osteosarcoma (OS). Research has demonstrated that small subsets of cells called cancer stem cells (CSCs) are responsible for multiple drug resistance. CSCs are potential targets for reversing chemoresistance. In the present study, we compared cisplatin sensitivity between OS stem cells and OS non-stem cells. We confirmed that OS stem cells showed significant cisplatin-resistance compared with the OS non-CSCs. Mechanically, we proved that overexpression of the pyruvate kinase isoenzyme M2 (PKM2) was responsible for the resistance to cisplatin in OS stem cells. As a potential strategy, we found that co-treatment with metformin significantly decreased the half maximal inhibitory concentration (IC50) of cisplatin to HOS OS stem cells by downregulating the expression of PKM2. PKM2 downregulation resulted in, metformin inhibited glucose uptake, lactate production and ATP production in HOS CSCs. Therefore, metformin impaired the resistance of HOS CSCs to cisplatin and promoted cisplatin-induced apoptosis. In addition, antitumor effects of other chemotherapeutic drugs such as doxorubicin and 5-fluorouracil were proved to be enhanced by metformin on OS stem cells.


Carrier Proteins/biosynthesis , Membrane Proteins/biosynthesis , Metformin/administration & dosage , Neoplastic Stem Cells/drug effects , Osteosarcoma/drug therapy , Thyroid Hormones/biosynthesis , Adenosine Triphosphate , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cisplatin/administration & dosage , Doxorubicin/administration & dosage , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/drug effects , Glucose/metabolism , Humans , Neoplastic Stem Cells/pathology , Osteosarcoma/genetics , Osteosarcoma/pathology , Thyroid Hormone-Binding Proteins
18.
Am J Transl Res ; 9(2): 343-354, 2017.
Article En | MEDLINE | ID: mdl-28337264

To investigate which calcium channels are involved in cardiac myocyte hypertrophy induced by TNF-α, cultured cardiomyocytes were treated with 100 µg/L TNF-α. In addition, three different calcium channel blockers (2-APB, ryanodine and nifedipine) were used, and the effects of each calcium channel blocker on cardiac hypertrophy induced by TNF-α were carefully observed. Measurements included cytosolic calcium transients ([Ca2+]i), the level of intracellular calcium in individual cells, cell protein content, cell protein synthesis and cell volume. We found that the IP3R inhibitor (2-APB) and RyR inhibitor (ryanodine) both had significant suppressive effects on the level of [Ca2+]i, calcium concentration, cell protein content, cell protein synthesis and cell volume of cardiomyocytes treated with TNF-α (P<0.01). Moreover, their combined effects were significantly enhanced compared with their single effects (P<0.01). However, the inhibitor of the L type Ca2+ channel nifedipine exhibited no significant suppressive effects on the increase in [Ca2+]i, calcium concentration, cell protein content, cell protein synthesis and cell volume of cardiomyocytes induced by TNF-α (P>0.05). Our results suggest that TNF-α probably induces cardiac myocyte hypertrophy by activating IP3R and RyR calcium channels, which control the release of calcium ions from the sarcoplasmic reticulum (SR) in cardiomyocytes. On the other hand, extracellular calcium influx, which is mainly regulated by the L type Ca2+ channel, may not be involved in cardiac myocyte hypertrophy induced by TNF-α.

19.
Article En | MEDLINE | ID: mdl-29358969

Ulcerative colitis (UC) is a chronic lifelong inflammatory disorder of the colon. Current medical treatment of UC relies predominantly on the use of traditional drugs, including aminosalicylates, corticosteroids, and immunosuppressants, which failed to effectively control this disease's progression and produced various side effects. Here, we report a new Chinese medicine intestine formula (CIF) which greatly improved the effect of mesalazine, an aminosalicylate, on UC. In the present study, 60 patients with chronic UC were treated with oral mesalazine alone or in combination with CIF enema. The combination of mesalazine and CIF greatly and significantly improved the clinical symptoms and colon mucosal condition and improved the Mayo Clinic Disease Activity Index and health-related quality of life, when compared to mesalazine alone. In particular, the addition of CIF further decreased serum levels of tumor necrosis factor-alpha and hypersensitivity C-reactive protein but in contrast increased interleukin-4. Thus, the results demonstrate the beneficial role of CIF in UC treatment, which may be mediated by the regulation of inflammation.

20.
Mol Med Rep ; 13(6): 4779-85, 2016 Jun.
Article En | MEDLINE | ID: mdl-27082984

Ursolic acid (UA) has been reported to have a protective effect in colitis. However, the underlying mechanisms remain to be elucidated. In the present study, experimental ulcerative colitis was induced in male BALB/c mice by the administration of 5% dextran sulfate sodium (DSS) for 7 days, followed by treatment with UA for another 7 days. Hematoxylin & eosin staining was performed to evaluate colon tissue damage, and enzyme assays were used to measure malondialdehyde (MDA) content and superoxide dismutase (SOD) activity in colon homogenate. In addition, serum levels of interleukin (IL)­1ß and tumor necrosis factor (TNF)­α were measured using an ELISA, and the level of nuclear factor (NF)­κB p65 in the colonic tissues was assessed by western blotting. The 7­day DSS administration induced marked colon damage, increased the serum levels of IL­1ß and TNF­α, increased MDA content and decreased SOD activity in the colon homogenate. These changes were significantly improved by treatment with UA. UA also reduced the DSS­stimulated high nuclear level of NF­κB p65 in the colon tissues. These results demonstrate a protective role of UA in ulcerative colitis, and suggest that anti-inflammatory and antioxidant activities are involved in the underlying mechanisms.


Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Colitis, Ulcerative/drug therapy , Colon/drug effects , Triterpenes/therapeutic use , Animals , Colitis, Ulcerative/blood , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/pathology , Colon/pathology , Dextran Sulfate , Interleukin-1beta/blood , Male , Malondialdehyde/analysis , Mice , Mice, Inbred BALB C , NF-kappa B/analysis , Tumor Necrosis Factor-alpha/blood , Ursolic Acid
...