Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Materials (Basel) ; 16(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37512372

ABSTRACT

Laser additively manufactured (LAM) Ti-6Al-4V alloy has huge application potential in aerospace structural parts such as turbine blades. However, there are few studies on the fatigue properties of such LAM parts under vibration loading, particularly with regard to anisotropy. In this paper, vibration fatigue properties of LAM Ti-6Al-4V by laser melted deposition were investigated along the transversely deposited (TD) and parallelly deposited (PD) directions. Through the first-order bending vibration experiments, the LAM Ti-6Al-4V alloy exhibits obvious anisotropic fatigue properties and significant dispersion in fracture position. The fracture morphology analysis reveals that the vibration fatigue failure was mainly dominated by process-induced defects and microstructure. The fatigue strength at 106 cycles of the samples with defect-free failure features (DFF) at initiation sites is 470.9 MPa in PD and 434.2 Mpa in TD, while that of the samples with defect-related failure features (DRF) at initiation sites is 364.2 Mpa in PD and 381.0 Mpa in TD. For the DFF group, the fatigue behavior is controlled by the prior ß columnar grains with preferential orientation, which leads to enhanced fatigue crack propagation resistance for the PD samples. For the DRF group, which has lower fatigue lives, the fatigue anisotropy strongly depends on the projection area of the lack-of-fusion defects relative to the loading direction, resulting in better fatigue performance for the TD samples.

2.
Polymers (Basel) ; 15(11)2023 May 31.
Article in English | MEDLINE | ID: mdl-37299343

ABSTRACT

Polypropylene-fiber-reinforced foamed concrete (PPFRFC) is often used to reduce building structure weight and develop engineering material arresting systems (EMASs). This paper investigates the dynamic mechanical properties of PPFRFC with densities of 0.27 g/cm3, 0.38 g/cm3, and 0.46 g/cm3 at high temperatures and proposes a prediction model to characterize its behavior. To conduct the tests on the specimens over a wide range of strain rates (500~1300 s-1) and temperatures (25~600 °C), the conventional split-Hopkinson pressure bar (SHPB) apparatus was modified. The test results show that the temperature has a substantial effect on the strain rate sensitivity and density dependency of the PPFRFC. Additionally, the analysis of failure models demonstrates that with the melting of polypropylene fibers, the level of damage in PPFRFC under dynamic loading increases, resulting in the generation of a greater number of fragments.

3.
3D Print Addit Manuf ; 10(1): 124-135, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36998790

ABSTRACT

To investigate the mechanical property and failure behavior of laser metal deposited additive manufacturing Ti-6Al-4V (LMD Ti64) in a wide range of stress states and strain rates, different types of specimens were tested at strain rates of 0.001-5000/s. Numerical simulations were conducted to collect the local fracture strain at the critical position where the failure happened for all specimens. By comparing with Ti64 alloy manufactured by different techniques, the failure behavior of LMD Ti64 alloy shows a stronger sensitivity to Lode angle parameter and strain rate. The role of initial defects in failure was discussed. It is found that high laser power and overlap ratio can improve the failure behavior by reducing the number of initial defects. The initial defects on the fracture surface at much higher strain rates were observed, indicating that the initial crack rather than initial void acts as the crack growth point leading to the final fracture at higher strain rates. The scanning electron microscope observation of the fracture surface shows that the failure mechanism of LMD Ti64 alloy varies from different stress states and strain rates. The failure mechanism is characterized by the shear fracture at the negative stress triaxiality, whereas the void growth fracture plays a dominant role in the failure mechanism of LMD Ti64 alloy at a high stress triaxiality on the quasi-static loading condition.

4.
Sensors (Basel) ; 22(13)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35808383

ABSTRACT

At the current stage, there is an urgent need for new techniques to dynamically calibrate advanced wide-range (up to 104 N~105 N) triaxial force transducers. Based on this background, this paper proposes a novel impact calibration method, specifically for the triaxial force transducer, with a wide range and high-frequency response. In this method, the Hopkinson bar, which is typically used to test the dynamic mechanical properties of materials, was used as a generator to generate reference input force for the transducer. In addition, unlike conventional methods, the transverse sensitivities of the transducer were given necessary importance in the proposed method. The calibration result of the triaxial force transducer was expressed in a sensitivity matrix, containing three main sensitivity coefficients and six transverse sensitivity coefficients. The least squares method (LSM) was used to fit the sensitivity matrix linearly. Calibration experiments were performed on a typical triaxial force transducer. Several key issues, involving the validity and the test range, of the method were further investigated numerically. The feasibility and validity of the method were eventually confirmed. The test range of the method can be up to 106 N.

5.
Med Biol Eng Comput ; 47(11): 1189-95, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19830468

ABSTRACT

The vibration characteristics of a maxillary central incisor were investigated by using the finite element method (FEM) according to nonlinear behavior of the human periodontal ligament (PDL). The effect of alveolar bone loss was also studied to obtain the relationship between the vibration property of the tooth in the periodontal system and the level of periodontal attachment for assessing the condition of periodontium. Three-dimensional (3D) finite element model of the tooth was constructed using CT image-reconstruction, and the elastic face foundation constraint was applied to the surface of the tooth root where the PDL was attached to. Modal analysis was performed by using FEM. The nonlinear behavior of the PDL was assigned and approached by the piecewise linearized method. The results indicated that the vibration of the maxillary central incisor in the periodontal system could be described by several modal frequencies and modes. The first four modes were dominant, which varied with the deformation of the PDL or the force applied on the tooth. The vibration frequency of the maxillary central incisor decreased with the losing of the alveolar bone, but the ratio of decrease had no significant correlation with the nonlinear behavior of the human PDL. The vibration frequency of the maxillary central incisor can be used to describe the loss of the alveolar bone and the level of periodontal attachment, under physiological short-term loading.


Subject(s)
Incisor/physiology , Maxilla/physiology , Periodontal Ligament/physiology , Alveolar Bone Loss/physiopathology , Finite Element Analysis , Humans , Models, Biological , Vibration
6.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 44(2): 101-4, 2009 Feb.
Article in Chinese | MEDLINE | ID: mdl-19563044

ABSTRACT

OBJECTIVE: To study mechanical and cyclic fatigue behavior of IPS Empress2 under cyclic loading, and to establish guidelines for the use and design of all-ceramic crowns. METHODS: A 3-D finit element method model of tooth and crown were established. The strength and lifetime of all-ceramic crowns under cyclic loading in centric occlusion were investigated using computational techniques of the Abaqus and MSC Fatigue software. RESULTS: Most of the fatigue and fracture of all-ceramic crown occurred within the veneering material at cervical marginal of the crown. The number of loading cycles before failure occurred varied within specified limits 2,506,109-6,950,243. The lifetime of the crown decreased significantly as loading increased and decreased gradually as loading time increased as well. CONCLUSIONS: The mechanical and fatigue behavior of ceramic materials and restorations need to be improved before clinical use in order to guarantee clinical long-term success of all-ceramic crown. properly in order to increase the longevity of all-ceramic crowns.


Subject(s)
Dental Porcelain , Denture, Partial, Fixed , Finite Element Analysis , Materials Testing
7.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 22(6): 463-5, 473, 2004 Dec.
Article in Chinese | MEDLINE | ID: mdl-15656521

ABSTRACT

OBJECTIVE: To study the residual stresses of ceramic-metal bond at viscoelastic and elastic phases during cooling of porcelain-fused-to-metal in order to precisely calculate the ceramic-metal bond strength and improve the restorations. METHODS: The finite element model was set up according the crack initiation test (three-point flexure bond test) based on ISO Standard, elements of viscoelastic and themal-displacement were used to part the model. The result at viscoelastic phases was used as initiation condition of elastic phases to add up. RESULTS: The compressive stress was caused by metal during cooling occurred in the ceramic. The shear stress induced by loading was offset by thermal shear stress. Load tensile stress and the thermal compressive stress vertical of interface concentrated at the end of the bond interface, but the tensile was greatly higher. CONCLUSION: The residual stress is very important to metal-ceramic restorations, and the viscoelastic behavior of porcelain greatly influences it. If the metal and ceramic are compatible,the components stresses of the residual stresses may benefit to ceramic-metal bond, and can be taken as a part of bond stresses.


Subject(s)
Dental Porcelain , Dental Stress Analysis , Materials Testing , Stress, Mechanical , Metal Ceramic Alloys
SELECTION OF CITATIONS
SEARCH DETAIL