Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
J Endovasc Ther ; : 15266028241266223, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058244

ABSTRACT

OBJECTIVE: The study aimed to investigate the early results of directional femoral ultrasound-guided compression technique (UCT) using in percutaneous mechanical thrombectomy (PMT) for acute deep vein thrombosis (DVT). METHODS: Consecutive single-center patients with acute iliofemoral DVT who underwent PMT from January 2020 to December 2021 were included. Directional femoral UCT was used to adjust the PMT catheter into the residual thrombus in the inguinal region by ultrasound compression to improve the thrombus clearance rate. Patients were retrospectively analyzed and divided into 2 groups based on PMT with or without directional femoral UCT. The primary efficacy outcome was the incidence of post-thrombotic syndrome (PTS) at 24-month follow-up. The secondary efficacy outcomes included common femoral venous thrombus removal grade, total thrombus removal grade, venous primary patency rate, and incidence of moderate-to-severe PTS at 24-month follow-up. The safety outcomes included complications, major bleeding events, and death at 24-month follow-up. RESULTS: A total of 96 patients were included in the study: 42 patients underwent PMT with directional femoral UCT and 54 patients underwent PMT without UCT. There was no significant difference in baseline characteristics between the 2 groups. The percentages of patients achieved common femoral venous thrombus removal grade 3 and total thrombus removal grade 3 were significantly higher in the PMT with UCT group than those in the PMT without UCT group (p<0.001). The 24-month primary patency rate was significantly higher in the PMT with UCT group than that in the PMT without UCT group (90.0% vs 71.2%, p=0.027). The incidence of PTS was significantly lower in the PMT with UCT group (10.0%) than that in the PMT without UCT group (28.8%) (p=0.027). CONCLUSION: PMT with directional femoral UCT could improve the thrombus clearance rate and primary patency rate of acute iliofemoral DVT and might decrease the incidence of PTS compared to traditional PMT treatment without UCT. CLINICAL IMPACT: Residual thrombus in common femoral vein is a difficult problem associated with higher incidence of PTS. Few studies have focused on common femoral venous thrombus clearance. PMT with directional femoral UCT could improve the thrombus clearance rate and primary patency rate of acute iliofemoral DVT, and might decrease the incidence of PTS compared to traditional PMT treatment without UCT. Directional femoral UCT is recommended in PMT treatment of acute iliofemoral DVT.

2.
Oncogene ; 43(21): 1631-1643, 2024 May.
Article in English | MEDLINE | ID: mdl-38589675

ABSTRACT

Androgen deprivation therapy (ADT) is the first line of treatment for metastatic prostate cancer (PCa) that effectively delays the tumor progression. However, it also increases the risk of venous thrombosis event (VTE) in patients, a leading cause of mortality. How a pro-thrombotic cascade is induced by ADT remains poorly understood. Here, we report that protein disulfide isomerase A2 (PDIA2) is upregulated in PCa cells to promote VTE formation and enhance PCa cells resistant to ADT. Using various in vitro and in vivo models, we demonstrated a dual function of PDIA2 that enhances tumor-mediated pro-coagulation activity via tumor-derived extracellular vehicles (EVs). It also stimulates PCa cell proliferation, colony formation, and xenograft growth androgen-independently. Mechanistically, PDIA2 activates the tissue factor (TF) on EVs through its isomerase activity, which subsequently triggers a pro-thrombotic cascade in the blood. Additionally, TF-containing EVs can activate the Src kinase inside PCa cells to enhance the AR signaling ligand independently. Androgen deprivation does not alter PDIA2 expression in PCa cells but enhances PDIA2 translocation to the cell membrane and EVs via suppressing the clathrin-dependent endocytic process. Co-recruitment of AR and FOXA1 to the PDIA2 promoter is required for PDIA2 transcription under androgen-deprived conditions. Importantly, blocking PDIA2 isomerase activity suppresses the pro-coagulation activity of patient plasma, PCa cell, and xenograft samples as well as castrate-resistant PCa xenograft growth. These results demonstrate that PDIA2 promotes VTE and tumor progression via activating TF from tumor-derived EVs. They rationalize pharmacological inhibition of PDIA2 to suppress ADT-induced VTE and castrate-resistant tumor progression.


Subject(s)
Disease Progression , Prostatic Neoplasms, Castration-Resistant , Protein Disulfide-Isomerases , Venous Thrombosis , Animals , Humans , Male , Mice , Androgen Antagonists/pharmacology , Androgen Antagonists/adverse effects , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/drug therapy , Protein Disulfide-Isomerases/metabolism , Protein Disulfide-Isomerases/genetics , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Thromboplastin/metabolism , Thromboplastin/genetics , Venous Thrombosis/metabolism , Venous Thrombosis/chemically induced , Venous Thrombosis/pathology , Venous Thrombosis/genetics , Venous Thrombosis/etiology , Xenograft Model Antitumor Assays
3.
J Endovasc Ther ; : 15266028231201097, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37728023

ABSTRACT

OBJECTIVE: Both stent grafts (SG) and drug-coated balloons (DCBs) have shown to be effective treatments for long and complex femoropopliteal (FP) lesions. However, there has not been a clinical trial comparing the 2 treatments directly. This study aims to compare the primary patency (PP) and clinical outcomes of SG and DCB for endovascular treatment of complex FP Trans-Atlantic Inter-Society Consensus (TASC) C/D lesions in patients. METHODS: From July 2013 to May 2019, a retrospective study was conducted at 2 medical centers to compare the clinical outcomes of Viabahn SG and DCB angioplasty in patients with TASC C/D FP lesions. The study used overlap weighting to adjust for differences in baseline characteristics and to reduce the impact of confounding factors and selection bias between the 2 groups. The primary endpoint was PP through 24 months, and the secondary endpoints included freedom from clinical-driven target lesion revascularization (CD-TLR), all-cause of death rate, and major amputation rate. RESULTS: A total of 161 limbs in 150 patients with TASC C/D FP lesions were treated either with Viabahn SGs (67 limbs, 65 patients) or DCBs (94 limbs, 85 patients). In the DCB group, 22 target vessels (23.4%) underwent directional atherectomy before DCB angioplasty and 37 target vessels (39.4%) underwent bail-out bare-metal stent implantation for early recoil or severe dissection. The SG group had significantly higher PP rates at both the 12 and 24 months than in the DCB group (75.8% vs 39.2%, p=0.02; 64.1% vs 31.9%, p=0.02), respectively. However, there were no significant differences between the 2 groups in terms of CD-TLR, death rate, and major amputation rate. According to the results of multivariate analysis, DCB angioplasty was the only independent predictor associated with restenosis (hazard ratio [HR]=0.264, 95% confidence interval [CI]=0.100-0.696, p=0.007). CONCLUSIONS: This study showed that SG was associated with a significantly higher PP rate in complex long FP lesions compared with DCB angioplasty. However, there was no significant difference in the freedom from CD-TLR and major amputation rate. It is important to follow the criteria for using SG strictly to avoid early restenosis, which can lead to acute thrombosis and severe limb ischemia. Closer monitoring is recommended for patients who undergo SG implantation. CLINICAL IMPACT: There has no head-to-head clinical trial that compares DCB and SG in complex long FP lesions. This study showed that SG following the criteria was associated with a significantly higher PP rate compared with DCB angioplasty. Closer monitoring is recommended for patients with SG to avoid acute thrombosis. Randomized controlled trials comparing SG and DCB are necessary.

4.
J Endovasc Ther ; : 15266028231159243, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36927094

ABSTRACT

PURPOSE: To evaluate the safety and efficacy of Innospring® stent, a novel self-expanding interwoven nitinol stent, in treating femoropopliteal atherosclerotic lesions. METHODS: A prospective, single-center, single-arm, first-in-human study enrolled 15 patients (mean age 73.1 years; 13 men) to evaluate the safety and efficacy of the Innospring® stent monitored by core laboratories. The inclusion criteria were claudication or ischemic rest pain, de novo lesions or nonstented restenosis, >70% stenosis, lesion length <20 cm, and a reference vessel diameter of 4-7 mm. The primary safety endpoint was 30-day major adverse events. The primary efficacy end point was stent patency at 12 months. Follow-up evaluations were conducted at 30 days, 6 months, and 12 months. RESULTS: The lesion length was 6.1 ± 3.5 mm. Fourteen (93.3%) patients had lesions of the superficial femoral artery and 3 (20.0%) patients had lesions of the popliteal artery. Nine (60.0%) patients had moderate-to-severe calcified lesion. Technical and procedural success was 100%. No patients experienced major adverse events in the first 30 days. The Rutherford category showed significant and sustained improvement at 6 and 12 months. The 12-month follow-up radiographs obtained in 13 patients confirmed the absence of stent fractures in 100% of examinations. The cumulative primary stent patency rate at 6 and 12 months were 93.3% and 84.6%, respectively. CONCLUSION: Stenting of the superficial femoral and popliteal arteries using the Innospring® stent is safe and effective. This competing interwoven nitinol stent may provide superior stent integrity and fracture-resistance as well as serve areas under extreme mechanical stress. CLINICAL IMPACT: Endovascular recanalization is a widely accepted and recommended treatment for symptomatic peripheral artery diseases. The Innospring® stent is a novel self-expanding interwoven stent containing eight nitinol wires with additional radial force, fracture-resistance, and visibility under fluoroscopy. This first-in-human study using the Innospring® stent in patients with femoropopliteal occlusive disease reported that stenting of the superficial femoral and popliteal arteries using the Innospring® stent is safe and effective. This competing interwoven nitinol stent may provide an impressive stent integrity and fracture-resistance as well as serve areas under extreme mechanical stress.

5.
Int J Biol Sci ; 19(1): 347-361, 2023.
Article in English | MEDLINE | ID: mdl-36594092

ABSTRACT

Diabetic foot ulcers (DFUs) are among the most frequent complications of diabetes with significant morbidity and mortality. Diabetes can trigger neutrophils to undergo histone citrullination by protein arginine deiminase 4 (encoded by Padi4 in mice) and release neutrophil extracellular traps (NETs). The specific mechanism of NETs-mediated wound healing impairment in diabetes remains unknown. In this study, we show neutrophils are more susceptible to NETosis in diabetic wound environments. Via in vitro experiments and in vivo models of wound healing using wide-type and Padi4 -/- mice, we demonstrate NETs can induce the activation of PAK2 via the membrane receptor TLR-9. Then PAK2 phosphorylates the intracellular protein Merlin/NF2 to inhibit the Hippo-YAP pathway. YAP binds to transcription factor SMAD2 and translocates from the cytoplasm into the nucleus to promote endothelial-to-mesenchymal transition (EndMT), which ultimately impedes angiogenesis and delays wound healing. Suppression of the Merlin/YAP/SMAD2 pathway can attenuate NET-induced EndMT. Inhibition of NETosis accelerates wound healing by reducing EndMT and promoting angiogenesis. Cumulatively, these data suggest NETosis delays diabetic wound healing by inducing EndMT via the Hippo-YAP pathway. Increased understanding of the molecular mechanism that regulates NETosis and EndMT will be of considerable value for providing cellular targets amenable to therapeutic intervention for DFUs.


Subject(s)
Diabetes Mellitus , Diabetic Foot , Extracellular Traps , Animals , Mice , Extracellular Traps/metabolism , Neurofibromin 2/metabolism , Hippo Signaling Pathway , Wound Healing/genetics , Neutrophils/metabolism , Diabetic Foot/metabolism , Diabetes Mellitus/metabolism
6.
Thromb Haemost ; 123(1): 97-107, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36462769

ABSTRACT

Phenotypic switch of vascular smooth muscle cells (VSMCs) plays an important role in the pathogenesis of atherosclerosis. The mRNA expression of the synthetic biomarker Collagen Type I Alpha 1 Chain (COL1A1) gene is upregulated during the switch of VSMCs from the contractile to the synthetic phenotype. The association of noncoding circular RNAs transcribed by the COL1A1 gene with VSMC phenotype alteration and atherogenesis remains unclear. Here we reported a COL1A1 circular RNA (circCOL1A1) which is specifically expressed in VSMCs and is upregulated during phenotype alteration of VSMCs. CircCOL1A1 is also detectable in the serum or plasma. Healthy vascular tissues have a low expression of CircCOL1A1, while it is upregulated in atherosclerosis patients. Through ex vivo and in vitro assays, we found that circCOL1A1 can promote VSMC phenotype switch. Mechanistic analysis showed that circCOL1A1 may exert its function as a competing endogenous RNA of miR-30a-5p. Upregulation of circCOL1A1 ameliorates the inhibitory effect of miR-30a-5p on its target SMAD1, which leads to suppression of transforming growth factor-ß (TGF-ß) signaling. Our findings demonstrate that circCOL1A1 promotes the phenotype switch of VSMCs through the miR-30a-5p/SMAD1/TGF-ß axis and it may serve as a novel marker of atherogenesis or as a therapeutic target for atherosclerosis.


Subject(s)
Atherosclerosis , MicroRNAs , Humans , Atherosclerosis/metabolism , Cell Movement , Cell Proliferation , Cells, Cultured , MicroRNAs/metabolism , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle/pathology , Phenotype , RNA, Circular/genetics , RNA, Circular/metabolism , Transforming Growth Factor beta/metabolism
7.
Transl Res ; 255: 85-96, 2023 05.
Article in English | MEDLINE | ID: mdl-36435329

ABSTRACT

The neutrophil plays an important role during abdominal aortic aneurysm (AAA) formation by undergoing histone citrullination with peptidyl arginine deiminase 4 (encoded by Padi4) and releasing neutrophil extracellular traps (NETs). However, the specific role of NETs during AAA formation is elusive. We found the levels of NET components in serum and tissues were found to be significantly associated with the clinical outcome of AAA patients. Furthermore, we reported that NETs induced the synthetic and proinflammatory smooth muscle cells (SMCs) phenotype and promoted AAA formation in a Hippo-YAP pathway-dependent manner by in vitro and in vivo experiments. Padi4 or Yap global knockout mice, exhibited significantly less synthetic and proinflammatory phenotypes of SMCs and developed AAA with lower frequency and severity compared with those of controls. Further studies indicated that the phenotypic switch of SMCs was associated with NETs-regulated enrichment status of H3K4me3 and H3K27me3 at promoters of synthetic and proinflammatory genes in SMCs. Cumulatively, these data suggest that NETs contribute to AAA formation by promoting the synthetic and proinflammatory phenotype of SMCs via inhibiting the Hippo-YAP pathway. A better understanding of the molecular mechanisms that regulate NETs and SMC phenotype is important to provide suitable cellular targets to prevent AAA.


Subject(s)
Aortic Aneurysm, Abdominal , Extracellular Traps , Animals , Mice , Extracellular Traps/metabolism , Aortic Aneurysm, Abdominal/metabolism , Phenotype , Neutrophils/metabolism , Mice, Knockout , Myocytes, Smooth Muscle/metabolism
8.
Transl Res ; 254: 115-127, 2023 04.
Article in English | MEDLINE | ID: mdl-36336332

ABSTRACT

Diabetic foot ulcer (DFU) is among the most frequent complications of diabetes and is associated with significant morbidity and mortality. Excessive neutrophil extracellular traps (NETs) delay wound healing in diabetic patients. Therefore, interventions targeting NET release need to be developed to effectively prevent NET-based wound healing impairment. Gasdermin D (GSDMD), a pore-forming protein acts as a central executioner of inflammatory cell death and can activate inflammasomes in neutrophils to release NETs. A precise understanding of the mechanism underlying NET-mediated delay in diabetic wound healing may be valuable in identifying potential therapeutic targets to improve clinical outcomes. In this study, we reported that neutrophils were more susceptible to NETosis in diabetic wound environments of patients with DFU. By in vitro experiments and using in vivo mouse models of diabetic wound healing (wide-type, Nlrp3-/-, Casp-1-/-, and Gsdmd-/- mice), we demonstrated that NLRP3/caspase-1/GSDMD pathway on activation controls NET release by neutrophils in diabetic wound tissue. Furthermore, inhibition of GSDMD with disulfiram or genic deletion of Gsdmd abrogated NET formation, thereby accelerating diabetic wound healing. Disulfiram could inhibit NETs-mediated diabetic foot ulcer healing impairment by suppressing the NLRP3/Caspase-1/GSDMD pathway. In summary, our findings uncover a novel therapeutic role of disulfiram in inhibiting NET formation, which is of considerable value in accelerating wound healing in patients with DFU.


Subject(s)
Diabetes Mellitus , Diabetic Foot , Animals , Mice , Caspase 1/pharmacology , Disulfiram/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Wound Healing
9.
Front Immunol ; 13: 952164, 2022.
Article in English | MEDLINE | ID: mdl-35967343

ABSTRACT

Vascular intimal hyperplasia (VIH) is an important stage of atherosclerosis (AS), in which macrophages not only play a critical role in local inflammation, but also transform into foam cells to participate into plaque formation, where they appear to be heterogeneous. Recently, it was shown that CD11c+ macrophages were more associated with active plaque progression. However, the molecular regulation of phenotypic changes of plaque macrophages during VIH has not been clarified and thus addressed in the current study. Since CD11c- cells were M2a-polarized anti-inflammatory macrophages, while CD11c+ cells were M1/M2b-polarized pro-inflammatory macrophages, we used bioinformatics tools to analyze the CD11c+ versus CD11c- plaque macrophages, aiming to detect the differential genes associated with M1/M2 macrophage polarization. We obtained 122 differential genes that were significantly altered in CD11c+ versus CD11c- plaque macrophages, regardless of CD11b expression. Next, hub genes were predicted in these 122 genes, from which we detected 3 candidates, interleukin 6 (Il6), Decorin (Dcn) and Tissue inhibitor matrix metalloproteinase 1 (Timp1). The effects of these 3 genes on CD11c expression as well as on the macrophage polarization were assessed in vitro, showing that only expression of Il6, but not expression of Dcn or Timp1, induced M1/M2b-like polarization in M2a macrophages. Moreover, only suppression of Il6, but not suppression of either of Dcn or Timp1, induced M2a-like polarization in M1/M2b macrophages. Furthermore, pharmaceutical suppression of Il6 attenuated VIH formation and progression of AS in a mouse model that co-applied apolipoprotein E-knockout and high-fat diet. Together, our data suggest that formation of VIH can be controlled through modulating macrophage polarization, as a promising therapeutic approach for prevent AS.


Subject(s)
Atherosclerosis , Interleukin-6 , Macrophage Activation , Macrophages , Plaque, Atherosclerotic , Tunica Intima , Animals , Atherosclerosis/genetics , Atherosclerosis/immunology , Atherosclerosis/pathology , Hyperplasia/genetics , Hyperplasia/immunology , Hyperplasia/pathology , Interleukin-6/genetics , Interleukin-6/immunology , Macrophage Activation/genetics , Macrophage Activation/immunology , Macrophages/immunology , Macrophages/pathology , Mice , Plaque, Atherosclerotic/genetics , Plaque, Atherosclerotic/immunology , Plaque, Atherosclerotic/pathology , Tunica Intima/immunology , Tunica Intima/pathology
11.
Cell Prolif ; 54(5): e13023, 2021 May.
Article in English | MEDLINE | ID: mdl-33759281

ABSTRACT

BACKGROUND: Vascular smooth muscle cells (VSMC) switch to macrophage-like cells after cholesterol loading, and this change may play an important role in atherogenesis. Muscleblind-like splicing regulator 1 (MBNL1) is a well-known splicing factor that has been implicated in many cellular processes. However, the role of MBNL1 in VSMC macrophage-like transdifferentiation is largely unknown. In this study, we aim to characterize the role of MBNL1-induced gene splicing during atherogenesis. METHODS: The expression of MBNL1 and Abelson interactor 1 (Abi1) splice variants (Abi1-e10 and Abi1-Δe10) was compared between artery tissues from healthy donors and atherosclerosis patients. Regulatory mechanisms of MBNL1-induced Abi1 gene splicing were studied, and the signal pathways mediated by Abi1 splice variants were investigated in VSMC. RESULTS: Loss of MBNL1 was found in the macrophage-like VSMC (VSMC-M) in artery wall from atherosclerosis patients. In vitro and in vivo evidence confirmed that Abi1 is one of the MBNL1 target genes. Loss of MBNL1 significantly induces the Abi1-Δe10 isoform expression. Compared to the known actin organization activities of the Abi1 gene, we discovered a novel action of Abi1-Δe10, whereby Abi1-Δe10 activates Rac1 independent of upstream stimulation and triggers the Rac1-NOX1-ROS pathway, which results in increased expression of transcription factor Kruppel-like factor 4 (KLF4). While Abi1-Δe10 inhibits contractile VSMC biomarkers expression and cell contraction, it stimulates VSMC proliferation, migration and macrophage-like transdifferentiation. CONCLUSION: Loss-of-function of MBNL1 activates VSMC-M transdifferentiation to promote atherogenesis through regulating Abi1 RNA splicing.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cytoskeletal Proteins/genetics , Muscle, Smooth, Vascular/metabolism , RNA Splicing , RNA-Binding Proteins/metabolism , Actins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Atherosclerosis/metabolism , Atherosclerosis/pathology , Cell Dedifferentiation , Cells, Cultured , Cytoskeletal Proteins/metabolism , Humans , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/metabolism , Macrophages/cytology , Macrophages/metabolism , Muscle, Smooth, Vascular/cytology , NADPH Oxidase 1/antagonists & inhibitors , NADPH Oxidase 1/genetics , NADPH Oxidase 1/metabolism , Phenotype , Protein Isoforms/metabolism , RNA Interference , RNA, Small Interfering/metabolism , RNA-Binding Proteins/antagonists & inhibitors , RNA-Binding Proteins/genetics , Reactive Oxygen Species/metabolism , Signal Transduction , rac1 GTP-Binding Protein/metabolism
12.
J Vasc Surg Venous Lymphat Disord ; 9(5): 1128-1135, 2021 09.
Article in English | MEDLINE | ID: mdl-33540135

ABSTRACT

OBJECTIVE: In the present study, we compared the early results between different approaches for pharmacomechanical thrombectomy (PMT) in the treatment of entire-limb acute deep vein thrombosis (DVT). METHODS: The present retrospective cohort study included patients with entire-limb acute DVT who had undergone PMT from January 2016 to March 2019 at two independent vascular centers. At the first center (Renji Hospital), the vascular surgeons used contralateral femoral venous access or ipsilateral tibial venous access (CFVA/ITVA). All consecutive patients with entire-limb acute DVT had undergone PMT through CFVA/ITVA at the first center. At the second center (Affiliated Hangzhou First People's Hospital), the vascular surgeons had conducted PMT using the traditional approach via ipsilateral popliteal venous access (IPVA). All consecutive patients had undergone PMT through IPVA at the second center. The primary endpoint was the incidence of post-thrombotic syndrome (PTS). The secondary endpoints included thrombus removal grade, venous primary patency rate, and the incidence of moderate-to-severe PTS. RESULTS: A total of 73 patients were enrolled in the present study, including 37 patients with CFVA/ITVA at the first center and 36 patients with IPVA at the second center. No significant difference was detected between the two groups in age, gender, onset time, affected limb, or risk factors. The proportion of patients who had undergone catheter-directed thrombolysis was significantly lower in the CFVA/ITVA group than in the IPVA group (P = .010). Thrombus removal grade III was achieved more often in the CFVA/ITVA group than in the IPVA group (P = .007). The PTS incidence was significantly lower in the CFVA/ITVA group than in the IPVA group (P = .043). The thrombus removal grade and access type were independent factors associated with the development of PTS. Patients with complete thrombus removal (grade III) and CFVA/ITVA had a significantly lower incidence of PTS. CONCLUSIONS: PMT can increase the thrombus clearance rate, reduce the requirement for subsequent catheter-directed thrombolysis, and, potentially, decrease the incidence of PTS using CFVA/ITVA instead of traditional IPVA in the treatment of entire-limb acute DVT.


Subject(s)
Thrombectomy/methods , Venous Thrombosis/therapy , Anticoagulants/therapeutic use , Cohort Studies , Enoxaparin/therapeutic use , Female , Femoral Vein , Humans , Male , Middle Aged , Retrospective Studies , Urokinase-Type Plasminogen Activator/administration & dosage
13.
Stem Cell Res ; 51: 102174, 2021 03.
Article in English | MEDLINE | ID: mdl-33485183

ABSTRACT

Human induced pluripotent stem cell (hiPSC)-derived endothelial cell (hiPSC-EC) transplantation is a promising therapy for treating peripheral artery disease (PAD). However, the poor differentiation of hiPSCs limits their clinical application. Therefore, finding key factors that regulate cellular differentiation is crucial for improving the therapeutic efficacy of hiPSC-EC transplantation. Sterol regulatory element binding protein 1 (SREBP1) is a key regulator of lipid metabolism and stem cell differentiation. However, it remains unknown whether SREPBP1 modulates hiPSC differentiation. In this study, we showed that SREBP1 expression was negatively associated with hiPSC differentiation and EC function. The results show that SREBP1 binds to the promoter region of miR199b-5p and suppresses its transcription, resulting in the activation of Notch1 signaling. Blocking SREBP1 increased both hiPSC differentiation and EC angiogenesis. These findings demonstrate a novel role for SREBP1 in hiPSC differentiation and EC angiogenesis.


Subject(s)
Induced Pluripotent Stem Cells , Cell Differentiation , Endothelial Cells , Humans , Signal Transduction , Sterol Regulatory Element Binding Protein 1/genetics
14.
Front Cardiovasc Med ; 8: 683445, 2021.
Article in English | MEDLINE | ID: mdl-35242817

ABSTRACT

BACKGROUND: Acute aortic dissection (AAD) is a fatal disease demanding prompt diagnosis and proper treatment. There is a lack of serum markers that can effectively assist diagnosis and predict prognosis of AAD patients. METHODS: Ninety-six AAD patients were enrolled in this study, and 249 patients with chest pain due to acute myocardial infarction, pulmonary embolism, intramural hematoma, angina or other causes and 80 healthy controls were included as control group and healthy control group. Demographics, biochemical and hematological data and risk factors were recorded as baseline characteristics. The 1-year follow-up data were collected and analyzed. The diagnostic performance and ability to predict disease severity and prognosis of NET components in serum and aortic tissue were evaluated. RESULTS: Circulating NET markers, citH3 (citrullination of histone 3), cell-free DNA (cfDNA) and nucleosomes, had good diagnostic value for AAD, with superior diagnostic performance to D-dimer in discriminating patients with chest pain due to other reasons in the emergency department. Circulating NET marker levels (i.e., citH3, cfDNA and nucleosomes) of AAD patients were significantly higher than that of control group and healthy control group. In addition, circulating NET markers levels were closely associated with the disease severity, in-hospital death and 1-year survival of AAD patients. Systolic blood pressure < 90 mmHg and serum citH3 levels were identified as independent risk factors for 1-year survival of AAD patients. Excessive NET components (i.e., neutrophil elastase and citH3) in the aortic tissue of AAD patient were significantly higher than that of healthy donor aortic tissue. The expression levels of granules and nuclear NET components were significantly higher in aortic tissue from AAD patients than controls. CONCLUSIONS: Circulating NET markers, citH3, cfDNA and nucleosomes, have significant diagnostic value and predictive value of disease severity and prognosis of AAD patients. The NETs components may constitute a useful diagnostic and prognostic marker in AAD patients.

15.
Chin Med J (Engl) ; 134(1): 73-80, 2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33323827

ABSTRACT

BACKGROUND: Arteriosclerosis obliterans (ASO) is a major cause of adult limb loss worldwide. Autophagy of vascular endothelial cell (VEC) contributes to the ASO progression. However, the molecular mechanism that controls VEC autophagy remains unclear. In this study, we aimed to explore the role of the GRB2 associated binding protein 1 (GAB1) in regulating VEC autophagy. METHODS: In vivo and in vitro studies were applied to determine the loss of adapt protein GAB1 in association with ASO progression. Histological GAB1 expression was measured in sclerotic vascular intima and normal vascular intima. Gain- and loss-of-function of GAB1 were applied in VEC to determine the effect and potential downstream signaling of GAB1. RESULTS: The autophagy repressor p62 was significantly downregulated in ASO intima as compared to that in healthy donor (0.80 vs. 0.20, t = 6.43, P < 0.05). The expression level of GAB1 mRNA (1.00 vs. 0.24, t = 7.41, P < 0.05) and protein (0.72 vs. 0.21, t = 5.97, P < 0.05) was significantly decreased in ASO group as compared with the control group. Loss of GAB1 led to a remarkable decrease in LC3II (1.19 vs. 0.68, t = 5.99, P < 0.05), whereas overexpression of GAB1 significantly led to a decrease in LC3II level (0.41 vs. 0.93, t = 7.12, P < 0.05). Phosphorylation levels of JNK and p38 were significantly associated with gain- and loss-of-function of GAB1 protein. CONCLUSION: Loss of GAB1 promotes VEC autophagy which is associated with ASO. GAB1 and its downstream signaling might be potential therapeutic targets for ASO treatment.


Subject(s)
Adaptor Proteins, Signal Transducing , Arteriosclerosis Obliterans , Autophagy , Phosphoproteins , Adult , Arteriosclerosis Obliterans/genetics , GRB2 Adaptor Protein , Humans , Phosphoproteins/metabolism , Phosphorylation , Protein Binding , Signal Transduction
16.
Atherosclerosis ; 313: 102-110, 2020 11.
Article in English | MEDLINE | ID: mdl-33038663

ABSTRACT

BACKGROUND AND AIMS: Phenotypic switch of vascular smooth muscle cells (VSMC) plays a key role in the pathogenesis of atherosclerosis and restenosis after artery intervention. Transcription repressor element 1-silencing transcription factor (REST) has been identified as key regulator of VSMC proliferation. In the present study, we sought to investigate the potential association of E3-ubiquitin ligase ß-TRCP mediated REST protein degradation with Kv1.3 expression during VSMC phenotypic switch. METHODS: Protein and mRNA expression was measured in ex vivo and in vitro models. Protein interaction and ubiquitination were analyzed by immunoprecipitation assays. ChIP assays were performed to assess the relationship between REST and targeted DNA binding site. RESULTS: We found that the expression level of E3-ubiquitin ligase ß-TRCP is significantly increased during VSMC phenotypic switch. REST protein ubiquitination mediated by ß-TRCP is critical for VSMC proliferation and migration. We also found that the gene KCNA3 encoding potassium channel protein Kv1.3 contains a functional REST binding site and is repressed by REST. Downregulation of REST by ß-TRCP and consequently upregulation of Kv1.3 are important events during VSMC phenotypic switch. Furthermore, upregulated Kv1.3 accelerates ß-TRCP modulated REST degradation through Erk1/2 signaling. CONCLUSIONS: Our results reveal a fundamental role for regulatory interactions between ß-TRCP modulated REST degradation and Kv1.3 in the control of the multilayered regulatory programs required for VSMC phenotype switch.


Subject(s)
Kv1.3 Potassium Channel/metabolism , Muscle, Smooth, Vascular , Repressor Proteins/metabolism , beta-Transducin Repeat-Containing Proteins/metabolism , Animals , Humans , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Phenotype , Proteolysis , beta-Transducin Repeat-Containing Proteins/genetics
17.
Arterioscler Thromb Vasc Biol ; 40(7): e203-e213, 2020 07.
Article in English | MEDLINE | ID: mdl-32460580

ABSTRACT

OBJECTIVE: Arteriovenous fistulae (AVF) are the optimal conduit for hemodialysis access but have high rates of primary maturation failure. Successful AVF maturation requires wall thickening with deposition of ECM (extracellular matrix) including collagen and fibronectin, as well as lumen dilation. TAK1 (TGFß [transforming growth factor-beta]-activated kinase 1) is a mediator of noncanonical TGFß signaling and plays crucial roles in regulation of ECM production and deposition; therefore, we hypothesized that TAK1 regulates wall thickening and lumen dilation during AVF maturation. Approach and Results: In both human and mouse AVF, immunoreactivity of TAK1, JNK (c-Jun N-terminal kinase), p38, collagen 1, and fibronectin was significantly increased compared with control veins. Manipulation of TAK1 in vivo altered AVF wall thickening and luminal diameter; reduced TAK1 function was associated with reduced thickness and smaller diameter, whereas activation of TAK1 function was associated with increased thickness and larger diameter. Arterial magnitudes of laminar shear stress (20 dyne/cm2) activated noncanonical TGFß signaling including TAK1 phosphorylation in mouse endothelial cells. CONCLUSIONS: TAK1 is increased in AVF, and TAK1 manipulation in a mouse AVF model regulates AVF thickness and diameter. Targeting noncanonical TGFß signaling such as TAK1 might be a novel therapeutic approach to improve AVF maturation.


Subject(s)
Aorta/surgery , Arteriovenous Shunt, Surgical , MAP Kinase Kinase Kinases/metabolism , Vascular Patency , Vascular Remodeling , Vena Cava, Inferior/surgery , Animals , Aorta/diagnostic imaging , Aorta/enzymology , Aorta/physiopathology , Cells, Cultured , Collagen Type I/metabolism , Endothelial Cells/enzymology , Fibronectins/metabolism , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Kinase Kinases/genetics , Male , Mechanotransduction, Cellular , Mice, Inbred C57BL , Phosphorylation , Stress, Mechanical , Vena Cava, Inferior/diagnostic imaging , Vena Cava, Inferior/enzymology , Vena Cava, Inferior/physiopathology , p38 Mitogen-Activated Protein Kinases/metabolism
18.
19.
Front Physiol ; 11: 559396, 2020.
Article in English | MEDLINE | ID: mdl-33584322

ABSTRACT

Autophagy is a host machinery that controls cellular health. Dysfunction of autophagy is responsible for the pathogenesis of many human diseases that include atherosclerosis obliterans (ASO). Physiologically, host autophagy removes aging organelles and delays the formation of atherosclerotic plaque. However, in ischemia event, dysregulated autophagy can be induced to trigger autosis, leading to an inevitable cellular death. Grb2-associated binder 1 (GAB1) is a docking/scaffolding adaptor protein that regulates many cell processes including autophagy. Our study first reported that the protein expression of GAB1 significantly decreased in ASO. Mechanically, our results showed that inhibition of Akt (protein kinase B), the upstream of mTOR (mechanistic target of rapamycin), significantly enhanced autophagy by demonstrating the downregulation of p62/Sequestosome 1 expression and the upregulation of the ratio of LC3II/LC3I. Conversely, we found that the inhibition of ERK1/2 (extracellular signal-regulated kinases1/2), p38, and JNK (c-Jun N-terminal kinase) signaling pathway, respectively, significantly inhibited autophagy by demonstrating the upregulation of p62 expression and the downregulation of the ratio of LC3II/LC3I. Further, we demonstrated that knockdown of GAB1 significantly increased autophagy in HUVECs (human umbilical vein endothelial cells) via activation of MAPK (mitogen-activated protein kinase) pathways that include ERK1/2, p38, and JNK. Moreover, we found that knockdown of GAB1 profoundly inhibited HUVEC proliferation, migration, and tube formation. Taken together, this study first suggests that GAB1 is a key regulator of autophagy in HUVECs. Targeting GAB1 may serve as a potential strategy for the atherosclerosis treatment.

20.
Nephrology (Carlton) ; 25(3): 230-238, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31099942

ABSTRACT

AIM: Muscle weakness is commonly among chronic kidney disease (CKD) patients. Muscle mitochondrial dysfunction and decreased pyruvate dehydrogenase (PDH) activity occur in CKD animals but have not been confirmed in humans, and changes in pyruvate dehydrogenase kinase (PDK) and pyruvate dehydrogenase phosphatase (PDP) expression have not been evaluated in CKD muscle. We presume that the reduction of muscle mitochondria and post-translational modification of PDH may cause muscle weakness in CKD patients. Herein, we explored changes in mitochondrial morphology, PDH expression and activity, and PDK/PDP expression in CKD patient muscle. METHODS: Twenty patients with stage 4-5 CKD (CKD group) and 24 volunteers (control group) were included. Clinical characteristics, biochemical information and handgrip strength (HGS) were determined. Skeletal muscle samples were collected from eight stage 5 CKD patients from CKD group. Other eight non-CKD surgical subjects' muscle samples were collected as control. PDH activity was determined using a PDH enzyme activity assay kit, and real-time PCR and western blotting analyses were performed to measure gene expression and protein levels, respectively. Transmission electron microscopy was used to study mitochondria morphology. RESULTS: CKD patients had lower HGS than non-CKD subjects, and HGS was correlated with gender, age, haemoglobin and albumin. Mitochondria were decreased in end-stage renal disease (ESRD) patients muscle. Mfn-1 expression and phospho-Drp1(S637)/Drp1 ratio were inhibited in the ESRD group, implicating dysfunctional mitochondrial dynamics. Muscle PDH activity and phospho-PDH(S293) were decreased in ESRD patient muscle, while PDK4 protein level was up regulated. CONCLUSION: Decreased mitochondria and PDH deficiency caused by up regulation of PDK 4 contribute to muscle dysfunction, and could be responsible for muscle weakness in CKD patients.


Subject(s)
Mitochondria, Muscle/physiology , Muscle Weakness/etiology , Muscle, Skeletal/enzymology , Protein Kinases/physiology , Renal Insufficiency, Chronic/complications , Adult , Aged , Female , Hand Strength , Humans , Male , Middle Aged , Renal Insufficiency, Chronic/physiopathology , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL