Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
Add more filters











Publication year range
1.
Chem Sci ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39296996

ABSTRACT

57Fe nuclear resonance vibrational spectroscopy (NRVS) has been applied to study a series of tetranuclear iron ([Fe4]) clusters based on a multidentate ligand platform (L3-) anchored by a 1,3,5-triarylbenzene linker and pyrazolate or (tertbutylamino)pyrazolate ligand (PzNH t Bu-). These clusters bear a terminal Fe(iii)-O/OH moiety at the apical position and three additional iron centers forming the basal positions. The three basal irons are connected with the apical iron center via a µ4-oxido ligand. Detailed vibrational analysis via density functional theory calculations revealed that strong NRVS spectral features below 400 cm-1 can be used as an oxidation state marker for the overall [Fe4] cluster core. The terminal Fe(iii)-O/OH stretching frequencies, which were observed in the range of 500-700 cm-1, can be strongly modulated (energy shifts of 20-40 cm-1 were observed) upon redox events at the three remote basal iron centers of the [Fe4] cluster without the change of the terminal Fe(iii) oxidation state and its coordination environment. Therefore, the current study provides a quantitative vibrational analysis of how the remote iron centers within the same iron cluster exert exquisite control of the chemical reactivities and thermodynamic properties of the specific iron site that is responsible for small molecule activation.

2.
Methods Enzymol ; 704: 199-232, 2024.
Article in English | MEDLINE | ID: mdl-39300648

ABSTRACT

Iron and 2-oxoglutarate dependent (Fe/2OG) enzymes exhibit an exceedingly broad reaction repertoire. The most prevalent reactivity is hydroxylation, but many other reactivities have also been discovered in recent years, including halogenation, desaturation, epoxidation, endoperoxidation, epimerization, and cyclization. To fully explore the reaction mechanisms that support such a diverse reactivities in Fe/2OG enzyme, it is necessary to utilize a multi-faceted research methodology, consisting of molecular probe design and synthesis, in vitro enzyme assay development, enzyme kinetics, spectroscopy, protein crystallography, and theoretical calculations. By using such a multi-faceted research approach, we have explored reaction mechanisms of desaturation and epoxidation catalyzed by a bi-functional Fe/2OG enzyme, AsqJ. Herein, we describe the experimental protocols and computational workflows used in our studies.


Subject(s)
Iron , Ketoglutaric Acids , Ketoglutaric Acids/chemistry , Ketoglutaric Acids/metabolism , Iron/chemistry , Iron/metabolism , Kinetics , Crystallography, X-Ray/methods , Enzyme Assays/methods , Hydroxylation , Models, Molecular
3.
ACS Catal ; 14(18): 14183-14194, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39324053

ABSTRACT

High-valent oxoiron species have been invoked as oxidizing agents in a variety of iron-dependent oxygenases. Taking inspiration from nature, selected nonheme iron complexes have been developed as catalysts to elicit C-H oxidation through the mediation of putative oxoiron(V) species, akin to those proposed for Rieske oxygenases. The addition of carboxylic acids in these iron-catalyzed C-H oxidations has proved highly beneficial in terms of product yields and selectivities, suggesting the direct involvement of iron(V)-oxo-carboxylato species. When the carboxylic acid functionality is present in the alkane substrate, it acts as a directing group, enabling the selective intramolecular γ-C-H hydroxylation that eventually affords γ-lactones. While this mechanistic frame is solidly supported by previous mechanistic studies, direct spectroscopic detection of the key iron(V)-oxo-carboxylato intermediate and its competence for engaging in the selective γ-C-H oxidation leading to lactonization have not been accomplished. In this work, we generate a series of well-defined iron(V)-oxo-carboxylato species (2c-2f) differing in the nature of the bound carboxylate ligand. Species 2c-2f are characterized by a set of spectroscopic techniques, including UV-vis spectroscopy, cold-spray ionization mass spectrometry (CSI-MS), and, in selected cases, EPR and Mössbauer spectroscopies. We demonstrate that 2c-2f undergo site-selective γ-lactonization of the carboxylate ligand in a stereoretentive manner, thus unequivocally identifying metal-oxo-carboxylato species as the powerful yet selective C-H cleaving species in catalytic γ-lactonization reactions of carboxylic acids. Reactivity experiments confirm that the intramolecular formation of γ-lactones is in competition with the intermolecular oxidation of external alkanes and olefins. Finally, mechanistic studies, together with DFT calculations, support a mechanism involving a site-selective C-H cleavage in the γ-position of the carboxylate ligand by the oxo moiety, followed by a fast carboxylate rebound, eventually leading to the selective formation of γ-lactones.

4.
Methods Enzymol ; 704: 91-111, 2024.
Article in English | MEDLINE | ID: mdl-39300658

ABSTRACT

Cyclopropane and azacyclopropane, also known as aziridine, moieties are found in natural products. These moieties serve as pivotal components that lead to a broad spectrum of biological activities. While diverse strategies involving various classes of enzymes are utilized to catalyze formation of these strained three-membered rings, how non-heme iron and 2-oxoglutarate (Fe/2OG) dependent enzymes enable regio- and stereo-selective C-C and C-N ring closure has only been reported very recently. Herein, we present detailed experimental protocols for mechanistically studying Fe/2OG enzymes that catalyze cyclopropanation and aziridination reactions. These protocols include protein purification, in vitro assays, biophysical spectroscopies, and isotope-tracer experiments. We also report how to use in silico approaches to look for Fe/2OG aziridinases. Furthermore, our current mechanistic understanding of three-membered ring formation is discussed. These results not only shed light on the reaction mechanisms of Fe/2OG enzymes-catalyzed cyclopropanation and aziridination, but also open avenues for expanding the reaction repertoire of the Fe/2OG enzyme superfamily.


Subject(s)
Aziridines , Cyclopropanes , Ketoglutaric Acids , Cyclopropanes/chemistry , Cyclopropanes/metabolism , Aziridines/chemistry , Aziridines/metabolism , Ketoglutaric Acids/metabolism , Ketoglutaric Acids/chemistry , Iron/chemistry , Iron/metabolism , Nonheme Iron Proteins/chemistry , Nonheme Iron Proteins/metabolism , Biocatalysis , Enzyme Assays/methods , Catalysis
5.
Proc Natl Acad Sci U S A ; 121(28): e2408092121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968106

ABSTRACT

The multinuclear nonheme iron-dependent oxidases (MNIOs) are a rapidly growing family of enzymes involved in the biosynthesis of ribosomally synthesized, posttranslationally modified peptide natural products (RiPPs). Recently, a secreted virulence factor from nontypeable Haemophilus influenzae (NTHi) was found to be expressed from an operon, which we designate the hvf operon, that also encodes an MNIO. Here, we show by Mössbauer spectroscopy that the MNIO HvfB contains a triiron cofactor. We demonstrate that HvfB works together with HvfC [a RiPP recognition element (RRE)-containing partner protein] to perform six posttranslational modifications of cysteine residues on the virulence factor precursor peptide HvfA. Structural characterization by tandem mass spectrometry and NMR shows that these six cysteine residues are converted to oxazolone and thioamide pairs, similar to those found in the RiPP methanobactin. Like methanobactin, the mature virulence factor, which we name oxazolin, uses these modified residues to coordinate Cu(I) ions. Considering the necessity of oxazolin for host cell invasion by NTHi, these findings point to a key role for copper during NTHi infection. Furthermore, oxazolin and its biosynthetic pathway represent a potential therapeutic target for NTHi.


Subject(s)
Bacterial Proteins , Copper , Haemophilus influenzae , Oxazolone , Virulence Factors , Haemophilus influenzae/metabolism , Haemophilus influenzae/enzymology , Haemophilus influenzae/genetics , Haemophilus influenzae/pathogenicity , Virulence Factors/metabolism , Virulence Factors/genetics , Copper/metabolism , Copper/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Oxazolone/metabolism , Thioamides/metabolism , Thioamides/chemistry , Iron/metabolism , Protein Processing, Post-Translational , Oxidoreductases/metabolism , Oxidoreductases/genetics , Operon , Cysteine/metabolism
6.
Chembiochem ; : e202400307, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900645

ABSTRACT

Non-heme mononuclear iron dependent (NHM-Fe) enzymes exhibit exceedingly diverse catalytic reactivities. Despite their catalytic versatilities, the mononuclear iron centers in these enzymes show a relatively simple architecture, in which an iron atom is ligated with 2-4 amino acid residues, including histidine, aspartic or glutamic acid. In the past two decades, a common high-valent reactive iron intermediate, the S=2 oxyferryl (Fe(IV)-oxo or Fe(IV)=O) species, has been repeatedly discovered in NHM-Fe enzymes containing a 2-His-Fe or 2-His-1-carboxylate-Fe center. However, for 3-His/4-His-Fe enzymes, no common reactive intermediate has been identified. Recently, we have spectroscopically characterized the first S=1 Fe(IV) intermediate in a 3-His-Fe containing enzyme, OvoA, which catalyzes a novel oxidative carbon-sulfur bond formation. In this review, we summarize the broad reactivities demonstrated by S=2 Fe(IV)-oxo intermediates, the discovery of the first S=1 Fe(IV) intermediate in OvoA and the mechanistic implication of such a discovery, and the intrinsic reactivity differences of the S=2 and the S=1 Fe(IV)-oxo species. Finally, we postulate the possible reasons to utilize an S=1 Fe(IV) species in OvoA and their implications to other 3-His/4-His-Fe enzymes.

7.
Sci Rep ; 14(1): 12197, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806591

ABSTRACT

Extremophile organisms are known that can metabolize at temperatures down to - 25 °C (psychrophiles) and up to 122 °C (hyperthermophiles). Understanding viability under extreme conditions is relevant for human health, biotechnological applications, and our search for life elsewhere in the universe. Information about the stability and dynamics of proteins under environmental extremes is an important factor in this regard. Here we compare the dynamics of small Fe-S proteins - rubredoxins - from psychrophilic and hyperthermophilic microorganisms, using three different nuclear techniques as well as molecular dynamics calculations to quantify motion at the Fe site. The theory of 'corresponding states' posits that homologous proteins from different extremophiles have comparable flexibilities at the optimum growth temperatures of their respective organisms. Although 'corresponding states' would predict greater flexibility for rubredoxins that operate at low temperatures, we find that from 4 to 300 K, the dynamics of the Fe sites in these homologous proteins are essentially equivalent.


Subject(s)
Extremophiles , Iron , Rubredoxins , Iron/metabolism , Iron/chemistry , Extremophiles/metabolism , Rubredoxins/chemistry , Rubredoxins/metabolism , Molecular Dynamics Simulation , Temperature
8.
Biochemistry ; 63(12): 1588-1598, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38817151

ABSTRACT

Thioredoxin reductases (TrxR) activate thioredoxins (Trx) that regulate the activity of diverse target proteins essential to prokaryotic and eukaryotic life. However, very little is understood of TrxR/Trx systems and redox control in methanogenic microbes from the domain Archaea (methanogens), for which genomes are abundant with annotations for ferredoxin:thioredoxin reductases [Fdx/thioredoxin reductase (FTR)] from group 4 of the widespread FTR-like family. Only two from the FTR-like family are characterized: the plant-type FTR from group 1 and FDR from group 6. Herein, the group 4 archetype (AFTR) from Methanosarcina acetivorans was characterized to advance understanding of the family and TrxR/Trx systems in methanogens. The modeled structure of AFTR, together with EPR and Mössbauer spectroscopies, supports a catalytic mechanism similar to plant-type FTR and FDR, albeit with important exceptions. EPR spectroscopy of reduced AFTR identified a transient [4Fe-4S]1+ cluster exhibiting a mixture of S = 7/2 and typical S = 1/2 signals, although rare for proteins containing [4Fe-4S] clusters, it is most likely the on-pathway intermediate in the disulfide reduction. Furthermore, an active site histidine equivalent to residues essential for the activity of plant-type FTR and FDR was found dispensable for AFTR. Finally, a unique thioredoxin system was reconstituted from AFTR, ferredoxin, and Trx2 from M. acetivorans, for which specialized target proteins were identified that are essential for growth and other diverse metabolisms.


Subject(s)
Iron-Sulfur Proteins , Iron-Sulfur Proteins/metabolism , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/genetics , Methanosarcina/enzymology , Methanosarcina/genetics , Ferredoxins/metabolism , Ferredoxins/chemistry , Ferredoxins/genetics , Oxidation-Reduction , Models, Molecular , Thioredoxins/metabolism , Thioredoxins/chemistry , Thioredoxins/genetics , Oxidoreductases/metabolism , Oxidoreductases/chemistry , Oxidoreductases/genetics , Thioredoxin-Disulfide Reductase/metabolism , Thioredoxin-Disulfide Reductase/chemistry , Thioredoxin-Disulfide Reductase/genetics , Archaeal Proteins/metabolism , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Electron Spin Resonance Spectroscopy
9.
J Am Chem Soc ; 146(6): 3796-3804, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38299607

ABSTRACT

S = 2 FeIV═O centers generated in the active sites of nonheme iron oxygenases cleave substrate C-H bonds at rates significantly faster than most known synthetic FeIV═O complexes. Unlike the majority of the latter, which are S = 1 complexes, [FeIV(O)(tris(2-quinolylmethyl)amine)(MeCN)]2+ (3) is a rare example of a synthetic S = 2 FeIV═O complex that cleaves C-H bonds 1000-fold faster than the related [FeIV(O)(tris(pyridyl-2-methyl)amine)(MeCN)]2+ complex (0). To rationalize this significant difference, a systematic comparison of properties has been carried out on 0 and 3 as well as related complexes 1 and 2 with mixed pyridine (Py)/quinoline (Q) ligation. Interestingly, 2 with a 2-Q-1-Py donor combination cleaves C-H bonds at 233 K with rates approaching those of 3, even though Mössbauer analysis reveals 2 to be S = 1 at 4 K. At 233 K however, 2 becomes S = 2, as shown by its 1H NMR spectrum. These results demonstrate a unique temperature-dependent spin-state transition from triplet to quintet in oxoiron(IV) chemistry that gives rise to the high C-H bond cleaving reactivity observed for 2.

10.
Water Res ; 252: 121198, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38295455

ABSTRACT

Combination of taxa and function can provide a more comprehensive picture on human-induced microbial homogenization. Here, we obtained 2.58 billion high-throughput sequencing reads and 479 high-quality metagenome-assembled genomes (MAGs) of planktonic microbial communities in a subtropical river for 5 years. We found the microbial taxa homogenization and functional homogenization were uncoupled. Although human activities in downstream sites significantly decreased the taxonomic diversity of non-abundant ASV communities (16S rRNA gene amplicon sequence variants), they did not significantly decrease the taxonomic diversity of abundant ASV and total observed MAG communities. However, the total observed MAG communities in downstream sites tended to homogenize into some specific taxa which encode human-activity-related functional genes, such as nutrient cycles, greenhouse gas emission, antibiotic and arsenic resistance. Those specific MAGs with high taxonomic diversity caused the weak heterogenization of total observed MAG communities in downstream sites. Moreover, functional homogenization promoted the synchrony among downstream MAGs, and these MAGs constructed some specific network modules might to synergistically execute or resist the human-activity-related functions. High synchrony also led to the tandem effects among MAGs and thus decreased community stability. Overall, our findings revealed the links of microbial taxa, functions and stability under human activity impacts, and provided a strong evidence to encourage us re-thinking biotic homogenization based on microbial taxa and their functional attributes.


Subject(s)
Bacteria , Microbiota , Humans , Bacteria/genetics , RNA, Ribosomal, 16S/genetics , Metagenome , Microbiota/genetics , Rivers
11.
Angew Chem Int Ed Engl ; 63(1): e202315844, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37963815

ABSTRACT

Valanimycin is an azoxy-containing natural product isolated from the fermentation broth of Streptomyces viridifaciens MG456-hF10. While the biosynthesis of valanimycin has been partially characterized, how the azoxy group is constructed remains obscure. Herein, the membrane protein VlmO and the putative hydrazine synthetase ForJ from the formycin biosynthetic pathway are demonstrated to catalyze N-N bond formation converting O-(l-seryl)-isobutyl hydroxylamine into N-(isobutylamino)-l-serine. Subsequent installation of the azoxy group is shown to be catalyzed by the non-heme diiron enzyme VlmB in a reaction in which the N-N single bond in the VlmO/ForJ product is oxidized by four electrons to yield the azoxy group. The catalytic cycle of VlmB appears to begin with a resting µ-oxo diferric complex in VlmB, as supported by Mössbauer spectroscopy. This study also identifies N-(isobutylamino)-d-serine as an alternative substrate for VlmB leading to two azoxy regioisomers. The reactions catalyzed by the kinase VlmJ and the lyase VlmK during the final steps of valanimycin biosynthesis are established as well. The biosynthesis of valanimycin was thus fully reconstituted in vitro using the enzymes VlmO/ForJ, VlmB, VlmJ and VlmK. Importantly, the VlmB-catalyzed reaction represents the first example of enzyme-catalyzed azoxy formation and is expected to proceed by an atypical mechanism.


Subject(s)
Azo Compounds , Azo Compounds/chemistry
12.
Angew Chem Int Ed Engl ; 63(3): e202316378, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37997195

ABSTRACT

Lewis acid-bound high valent Mn-oxo species are of great importance due to their relevance to photosystem II. Here, we report the synthesis of a unique [(BnTPEN)Mn(III)-O-Ce(IV)(NO3 )4 ]+ adduct (2) by the reaction of (BnTPEN)Mn(II) (1) with 4 eq. ceric ammonium nitrate. 2 has been characterized using UV/Vis, NMR, resonance Raman spectroscopy, as well as by mass spectrometry. Treatment of 2 with Sc(III)(OTf)3 results in the formation of (BnTPEN)Mn(IV)-O-Sc(III) (3), while HClO4 addition to 2 forms (BnTPEN)Mn(IV)-OH (4), reverting to 2 upon Ce(III)(NO3 )3 addition. 2 can also be prepared by the oxidation of 1 eq. Ce(III)(NO3 )3 with [(BnTPEN)Mn(IV)=O]2+ (5). In addition, the EPR spectroscopy revealed the elegant temperature-dependent equilibria between 2 and Mn(IV) species. The binding of redox-active Ce(IV) boosts electron transfer efficiency of 2 towards ferrocenes. Remarkably, the newly characterized Mn(III)-O-Ce(IV) species can carry out O-atom and H-atom transfer reactions.

13.
Protist ; 175(1): 126006, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38118390

ABSTRACT

Algicidal bacteria exhibit promising potential against harmful algal blooms (HABs); however, their application has been limited due to their limited algicidal activity. This study demonstrates the enhanced algicidal activity of Alteromonas sp. FDHY-CJ bacteria against harmful Skeletonema costatum using a 5 L fermenter. Utilizing this refined framework increased the OD600 value and algal cell mortality by 6.50 and 2.88 times, respectively, compared to non-optimized culture cultivated in a flask using marine broth 2216E medium. The mechanism of action involves significant inhibition of algal photosynthetic efficiency with concurrent degradation of photosynthetic pigments. Relative to the non-optimized group, the optimized bacterial treatment led to a significant increase in H2O2 and MDA (malondialdehyde) by 19.54 and 4.22-fold, respectively, and resulted in membrane damage. The culture optimization procedure yielded effectual algicidal substances capable of considerably reducing the severity of S. costatum HABs through cell membrane disruption.


Subject(s)
Alteromonas , Diatoms , Fermentation , Hydrogen Peroxide , Harmful Algal Bloom , Photosynthesis , Culture Media
14.
Biology (Basel) ; 12(11)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37998046

ABSTRACT

The role of microorganisms in effectively terminating harmful algal blooms (HABs) is crucial for maintaining environmental stability. Recent studies have placed increased emphasis on bio-agents capable of inhibiting HABs. The bacterium Pseudoalteromonas sp. strain FDHY-MZ2 has exhibited impressive algicidal abilities against Karenia mikimotoi, a notorious global HAB-forming species. To augment this capability, cultures were progressively scaled from shake flask conditions to small-scale (5 L) and pilot-scale (50 L) fermentation. By employing a specifically tailored culture medium (2216E basal medium with 1.5% soluble starch and 0.5% peptone), under precise conditions (66 h, 20 °C, 450 rpm, 30 L/min ventilation, 3% seeding, and constant starch flow), a notable increase in algicidal bacterial biomass was observed; the bacterial dosage required to entirely wipe out K. mikimotoi within a day decreased from 1% to 0.025%. Compared to an unoptimized shake flask group, the optimized fermentation culture caused significant reductions in algal chlorophyll and protein levels (21.85% and 78.3%, respectively). Co-culturing induced increases in algal malondialdehyde and H2O2 by 5.98 and 5.38 times, respectively, leading to further disruption of algal photosynthesis. This study underscores the unexplored potential of systematically utilized microbial agents in mitigating HABs, providing a pathway for their wider application.

16.
Inorg Chem ; 62(41): 16842-16853, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37788376

ABSTRACT

The salt [K(18-crown-6)]2[Ru(CN)2(CO)3] ([K(18-crown-6)]2[1]) was generated by the reaction of Ru(C2H4)(CO)4 with [K(18-crown-6)]CN. An initial thermal reaction gives [Ru(CN)(CO)4]-, which, upon ultraviolet (UV) irradiation, reacts with a second equiv of CN-. Protonation of [1]2- gave [HRu(CN)2(CO)3]- ([H1]-), which was isolated as a single isomer with mutually trans cyanide ligands. The complex cis,cis,cis-[Ru(pdt)(CN)2(CO)2]2- ([2]2-) was prepared by the UV-induced reaction of [1]2- with propanedithiol (pdtH2). The corresponding iron complex cis,cis,cis-[Fe(pdt)(CN)2(CO)2]2- ([3]2-) was prepared similarly. The pdt complexes [2]2- and [3]2- were treated with Fe(benzylideneacetone)(CO)3 to give, respectively, [RuFe (µ-pdt)(CN)2(CO)4]2- ([5]2-) and [Fe2(µ-pdt)(CN)2(CO)4]2- ([4]2-). The pathway from [3]2- to Fe2 complex [4]2- implicates intermetallic migration of CN-. In contrast, the formation of [5]2- leaves the Ru(CN)2(CO) center intact, as confirmed by X-ray crystallography. The structure of [5]2- features a "rotated" square-pyramidal Fe(CO)2(µ-CO) site. NMR measurements indicate that the octahedral Ru site is stereochemically rigid, whereas the Fe site dynamically undergoes turnstile rotation. 57Fe Mössbauer spectral parameters are very similar for rotated [5]2- and unrotated Fe2 complex [4]2-, indicating the insensitivity of that technique to both the geometry and the oxidation state of the Fe site. According to cyclic voltammetry, [5]2- oxidizes at E1/2 ∼ -0.8 V vs Fc+/0. Electron paramagnetic resonance (EPR) measurements show that 1e- oxidation of [5]2- gives an S = 1/2 rhombic species, consistent with the formulation Ru(II)Fe(I), related to the Hox state of the [FeFe] hydrogenases. Density functional theory (DFT) studies reproduce the structure, 1H NMR shifts, and infrared (IR) spectra observed for [5]2-. Related homometallic complexes with both cyanides on a single metal are predicted to not adopt rotated structures. These data suggest that [5]2- is best described as Ru(II)Fe(0). This conclusion raises the possibility that for some reduced states of the [FeFe]-hydrogenases, the [2Fe]H site may be better described as Fe(II)Fe(0) than Fe(I)Fe(I).

17.
J Am Chem Soc ; 145(44): 24210-24217, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37874539

ABSTRACT

BelL and HrmJ are α-ketoglutarate-dependent nonheme iron enzymes that catalyze the oxidative cyclization of 6-nitronorleucine, resulting in the formation of two diastereomeric 3-(2-nitrocyclopropyl)alanine (Ncpa) products containing trans-cyclopropane rings with (1'R,2'R) and (1'S,2'S) configurations, respectively. Herein, we investigate the catalytic mechanism and stereodivergency of the cyclopropanases. The results suggest that the nitroalkane moiety of the substrate is first deprotonated to produce the nitronate form. Spectroscopic analyses and biochemical assays with substrates and analogues indicate that an iron(IV)-oxo species abstracts proS-H from C4 to initiate intramolecular C-C bond formation. A hydroxylation intermediate is unlikely to be involved in the cyclopropanation reaction. Additionally, a genome mining approach is employed to discover new homologues that perform the cyclopropanation of 6-nitronorleucine to generate cis-configured Ncpa products with (1'R,2'S) or (1'S,2'R) stereochemistries. Sequence and structure comparisons of these cyclopropanases enable us to determine the amino acid residues critical for controlling the stereoselectivity of cyclopropanation.


Subject(s)
Aminocaproates , Stereoisomerism , Oxidation-Reduction
18.
Chem Sci ; 14(34): 9167-9174, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37655023

ABSTRACT

Reaction of the nitrosylated-iron metallodithiolate ligand, paramagnetic (NO)Fe(N2S2), with [M(CH3CN)n][BF4]2 salts (M = NiII, PdII, and PtII; n = 4 or 6) affords di-radical tri-metallic complexes in a stairstep type arrangement ([FeMFe]2+, M = Ni, Pd, and Pt), with the central group 10 metal held in a MS4 square plane. These isostructural compounds have nearly identical ν(NO) stretching values, isomer shifts, and electrochemical properties, but vary in their magnetic properties. Despite the intramolecular Fe⋯Fe distances of ca. 6 Å, antiferromagnetic coupling is observed between {Fe(NO)}7 units as established by magnetic susceptibility, EPR, and DFT studies. The superexchange interaction through the thiolate sulfur and central metal atoms is on the order of NiII < PdII ≪ PtII with exchange coupling constants (J) of -3, -23, and -124 cm-1, consistent with increased covalency of the M-S bonds (3d < 4d < 5d). This trend is reproduced by DFT calculations with molecular orbital analysis providing insight into the origin of the enhancement in the exchange interaction. Specifically, the magnitude of the exchange interaction correlates surprisingly well with the energy difference between the HOMO and HOMO-1 orbitals of the triplet states, which is reflected in the central metal's contribution to these orbitals. These results demonstrate the ability of sulfur-dense metallodithiolate ligands to engender strong magnetic communication by virtue of their enhanced covalency and polarizability.

19.
Angew Chem Int Ed Engl ; 62(46): e202313006, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37751302

ABSTRACT

Isoporphyrins have recently been identified as remarkable species capable of turning the nucleophile attached to the porphyrin ring into an electrophile, thereby providing umpolung of reactivity (Inorg. Chem. 2022, 61, 8105-8111). They are generated by nucleophilic attack on an iron(III) π-dication, a class of species that has received scant attention. Here, we explore the effect of the porphyrin meso-substituent and report a iron(III) π-dication bearing the meso-tetraphenylporphyrin (TPP) ligand. We provide an extensive study of the species by UV/Vis absorption, 2 H NMR, EPR, applied field Mössbauer, and resonance Raman spectroscopy. We further explore the system's highly dynamic and tunable properties and address the nature of the axial ligands as well as the conformation of the porphyrin ring. The insights presented are essential for the rational design of catalysts for the umpolung of nucleophiles. Such catalytic avenues could for example provide a novel method for electrophilic chlorinations. We further examine the importance of electronic tuning of the porphyrin by nature of the meso-substituent as a factor in catalyst design.

20.
Angew Chem Int Ed Engl ; 62(41): e202311099, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37639670

ABSTRACT

Mononuclear nonheme iron(II) and 2-oxoglutarate (Fe/2OG)-dependent oxygenases and halogenases are known to catalyze a diverse set of oxidative reactions, including hydroxylation, halogenation, epoxidation, and desaturation in primary metabolism and natural product maturation. However, their use in abiotic transformations has mainly been limited to C-H oxidation. Herein, we show that various enzymes of this family, when reconstituted with Fe(II) or Fe(III), can catalyze Mukaiyama hydration-a redox neutral transformation. Distinct from the native reactions of the Fe/2OG enzymes, wherein oxygen atom transfer (OAT) catalyzed by an iron-oxo species is involved, this nonnative transformation proceeds through a hydrogen atom transfer (HAT) pathway in a 2OG-independent manner. Additionally, in contrast to conventional inorganic catalysts, wherein a dinuclear iron species is responsible for HAT, the Fe/2OG enzymes exploit a mononuclear iron center to support this reaction. Collectively, our work demonstrates that Fe/2OG enzymes have utility in catalysis beyond the current scope of catalytic oxidation.


Subject(s)
Iron , Oxygenases , Oxygenases/metabolism , Iron/metabolism , Ketoglutaric Acids/metabolism , Oxidation-Reduction , Catalysis , Hydrogen
SELECTION OF CITATIONS
SEARCH DETAIL