Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 112
1.
Article En | MEDLINE | ID: mdl-38822541

BACKGROUND: Since the end of 2022, Azvudine was widely used to treat hospitalized novel coronavirus disease 2019 (COVID-19) patients in China. However, data on the clinical effectiveness of Azvudine against severe outcomes and post-COVID-19-conditions (PCC) among patients infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variants was limited. This study evaluates the effectiveness of Azvudine in hospitalized COVID-19 patients during a SARS-CoV-2 Omicron BA.5 dominance period. METHODS: From 1 November 2022 to 1 July 2023, we conducted a single-center retrospective cohort study based on hospitalized COVID-19 patients from a tertiary hospital in Shihezi, China, recruiting laboratory-confirmed hospitalized patients with SARS-CoV-2 infection. Patients treated with Azvudine and usual care were propensity-score matched (PSM) at a 1:1 ratio to a control group in which patients undergone usual care only, with matching based on covariates such as sex, age, ethnicity, number of preexisting conditions, antibiotic use upon admission, and complete blood cell count. The primary outcomes were all-cause death and PCC at short-term (60 days) post discharge. The secondary outcomes included the initiation of invasive mechanical ventilation and PCC at long-term post discharge (120 days). Cox proportional hazards (PH) regression models were employed to estimate the hazard ratios (HR) for both all-cause death and invasive mechanical ventilation, and logistic regression models were used to estimate the odds ratios (OR) for short-term and long-term PCC. Subgroup analyses were performed based on the matched covariates. RESULTS: A total of 2,639 hospitalized patients diagnosed with COVID-19 were initially identified, and 2,069 patients were screened following the exclusion criteria. After matching, 297 Azvudine recipients and 297 matched controls were eligible for analyses. The incidence rate of all-cause death was lower in the Azvudine group than in the control group (0.007 per person, 95% confidence interval [CI]: 0.001, 0.024 vs 0.128, 95% CI: 0.092, 0.171), and the use of Azvudine was associated with a significant lower risk of death and the use of Azvudine was associated with a reduced risk of death (HR: 0.049, 95% CI: 0.012, 0.205). Subgroup analyses indicated a significant effectiveness of Azvudine against the risk of all-cause death among men, age over 65, patients without the preexisting conditions, and patients with antibiotics dispensed at admission. Statistical difference were not observed between Azvudine group and control group in the invasive mechanical ventilation and short-term and long-term PCC. CONCLUSIONS: The present findings indicate that receipt of Azvudine was associated with lower risk of all-cause death among hospitalized patients with Omicron BA.5 infection a in real-world setting. Further research is urgently needed to validate the effectiveness of Azvudine on the PCC.


This study aims to evaluate the effectiveness of Azvudine in hospitalized COVID-19 patients during a SARS-CoV-2 Omicron BA.5 epidemic phase. using cox proportional hazards (PH) regression models were employed to estimate the hazard ratios (HR) for all-cause death. The results showed that the use of Azvudine was associated with a significantly reduced risk of all-cause death in hospitalized patients.

2.
Medicine (Baltimore) ; 103(23): e38392, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38847661

There is a correlation between IBD and breast cancer according to previous observational studies. However, so far there is no evidence to support if there is a causal relationship between these 2 diseases. We acquired comprehensive Genome-Wide Association Study (GWAS) summary data on IBD (including ulcerative colitis [UC] and Crohn disease [CD]) as well as breast cancer of completely European descent from the IEU GWAS database. The estimation of bidirectional causality between IBD (including UC and CD) and breast cancer was achieved through the utilization of 2-sample Mendelian randomization (MR). The MR results were also assessed for any potential bias caused by heterogeneity and pleiotropy through sensitivity analyses. Our study found a bidirectional causal effect between IBD and breast cancer. Genetic susceptibility to IBD was associated with an increased risk of breast cancer (OR = 1.053, 95% CI: 1.016-1.090, P = .004). Similarly, the presence of breast cancer may increase the risk of IBD (OR = 1.111, 95% CI: 1.035-1.194, P = .004). Moreover, the bidirectional causal effect between IBD and breast cancer can be confirmed by another GWAS of IBD. Subtype analysis showed that CD was associated with breast cancer (OR = 1.050, 95% CI: 1.020-1.080, P < .001), but not UC and breast cancer. There was a suggestive association between breast cancer and UC (OR = 1.106, 95% CI: 1.011-1.209, P = .028), but not with CD. This study supports a bidirectional causal effect between IBD and breast cancer. There appear to be considerable differences in the specific associations of UC and CD with AD. Understanding that IBD including its specific subtypes and breast cancer constitute common risk factors can contribute to the clinical management of both diseases.


Breast Neoplasms , Genetic Predisposition to Disease , Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Mendelian Randomization Analysis/methods , Breast Neoplasms/genetics , Breast Neoplasms/epidemiology , Female , Crohn Disease/genetics , Crohn Disease/epidemiology , Inflammatory Bowel Diseases/genetics , Colitis, Ulcerative/genetics , Colitis, Ulcerative/epidemiology , Risk Factors , Polymorphism, Single Nucleotide
3.
Angew Chem Int Ed Engl ; : e202404139, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38689425

Trisulfide unit is widely found in natural products and has garnered attention due to the unique pharmacological and physiochemical properties. However, despite limited progress, widely applicable approaches for constructing unsymmetrical trisulfides have so far remain scarce. In this work, an easy-to-prepare, solid-state and scalable reagent, S-substituted sulphenylthiosulphate, has been developed for the divergent synthesis of unsymmetrical trisulfides. Alkyl electrophile substrates, including bromides, chlorides, iodides and tosylates, with diverse substituents are smoothly converted to the corresponding trisulfides with S-substituted sulphenylthiosulphates and thiourea as another sulfur source. Furthermore, the late-stage modification of drug molecules was successfully achieved through this method.

4.
Biomimetics (Basel) ; 9(5)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38786481

The Dung beetle optimization (DBO) algorithm, devised by Jiankai Xue in 2022, is known for its strong optimization capabilities and fast convergence. However, it does have certain limitations, including insufficiently random population initialization, slow search speed, and inadequate global search capabilities. Drawing inspiration from the mathematical properties of the Sinh and Cosh functions, we proposed a new metaheuristic algorithm, Sinh-Cosh Dung Beetle Optimization (SCDBO). By leveraging the Sinh and Cosh functions to disrupt the initial distribution of DBO and balance the development of rollerball dung beetles, SCDBO enhances the search efficiency and global exploration capabilities of DBO through nonlinear enhancements. These improvements collectively enhance the performance of the dung beetle optimization algorithm, making it more adept at solving complex real-world problems. To evaluate the performance of the SCDBO algorithm, we compared it with seven typical algorithms using the CEC2017 test functions. Additionally, by successfully applying it to three engineering problems, robot arm design, pressure vessel problem, and unmanned aerial vehicle (UAV) path planning, we further demonstrate the superiority of the SCDBO algorithm.

5.
Life Sci ; 349: 122714, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38735366

AIMS: Non-alcoholic fatty liver disease (NAFLD) has risen as a significant global public health issue, for which vertical sleeve gastrectomy (VSG) has become an effective treatment method. The study sought to elucidate the processes through which PIM1 mitigates the advancement of NAFLD. The Pro-viral integration site for Moloney murine leukemia virus 1 (PIM1) functions as a serine/threonine kinase. Bioinformatics analysis revealed that reduced PIM1 expression in NAFLD. METHODS: To further prove the role of PIM1 in NAFLD, an in-depth in vivo experiment was performed, in which male C57BL/6 mice were randomly grouped to receive a normal or high-fat diet for 24 weeks. They were operated or delivered the loaded adeno-associated virus which the PIM1 was overexpressed (AAV-PIM1). In an in vitro experiment, AML12 cells were treated with palmitic acid to induce hepatic steatosis. KEY FINDINGS: The results revealed that the VSG surgery and virus delivery of mice alleviated oxidative stress, and apoptosis in vivo. For AML12 cells, the levels of oxidative stress, apoptosis, and lipid metabolism were reduced via PIM1 upregulation. Moreover, ML385 treatment resulted in the downregulation of the NRF2/HO-1/NQO1 signaling cascade, indicating that PIM1 mitigates NAFLD by targeting this pathway. SIGNIFICANCE: PIM1 alleviated mice liver oxidative stress and NAFLD induced by high-fat diet by regulating the NRF2/HO-1/NQO1 signaling Pathway.


Heme Oxygenase-1 , Mice, Inbred C57BL , NAD(P)H Dehydrogenase (Quinone) , NF-E2-Related Factor 2 , Non-alcoholic Fatty Liver Disease , Oxidative Stress , Proto-Oncogene Proteins c-pim-1 , Animals , Proto-Oncogene Proteins c-pim-1/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Male , Mice , NF-E2-Related Factor 2/metabolism , NAD(P)H Dehydrogenase (Quinone)/metabolism , NAD(P)H Dehydrogenase (Quinone)/genetics , Heme Oxygenase-1/metabolism , Diet, High-Fat/adverse effects , Liver/metabolism , Liver/pathology , Signal Transduction , Apoptosis , Membrane Proteins/metabolism , Membrane Proteins/genetics
6.
Environ Int ; 188: 108762, 2024 Jun.
Article En | MEDLINE | ID: mdl-38776652

BACKGROUND: While many investigations examined the association between environmental covariates and COVID-19 incidence, none have examined their relationship with superspreading, a characteristic describing very few individuals disproportionally infecting a large number of people. METHODS: Contact tracing data of all the laboratory-confirmed COVID-19 cases in Hong Kong from February 16, 2020 to April 30, 2021 were used to form the infection clusters for estimating the time-varying dispersion parameter (kt), a measure of superspreading potential. Generalized additive models with identity link function were used to examine the association between negative-log kt (larger means higher superspreading potential) and the environmental covariates, adjusted with mobility metrics that account for the effect of social distancing measures. RESULTS: A total of 6,645 clusters covering 11,717 cases were reported over the study period. After centering at the median temperature, a lower ambient temperature at 10th percentile (18.2 °C) was significantly associated with a lower estimate of negative-log kt (adjusted expected change: -0.239 [95 % CI: -0.431 to -0.048]). While a U-shaped relationship between relative humidity and negative-log kt was observed, an inverted U-shaped relationship with actual vapour pressure was found. A higher total rainfall was significantly associated with lower estimates of negative-log kt. CONCLUSIONS: This study demonstrated a link between meteorological factors and the superspreading potential of COVID-19. We speculated that cold weather and rainy days reduced the social activities of individuals minimizing the interaction with others and the risk of spreading the diseases in high-risk facilities or large clusters, while the extremities of relative humidity may favor the stability and survival of the SARS-CoV-2 virus.


COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/transmission , Humans , Hong Kong/epidemiology , Contact Tracing , Humidity , Meteorological Concepts , Weather , Temperature , Female , Male , Adult , Middle Aged
7.
Lancet Infect Dis ; 2024 May 03.
Article En | MEDLINE | ID: mdl-38710190

BACKGROUND: Studies have established the short-term efficacy of nirmatrelvir-ritonavir in managing COVID-19, yet its effect on post-COVID-19 condition, especially in patients admitted to hospital, remains understudied. This study aimed to examine the effect of nirmatrelvir-ritonavir on post-COVID-19 condition among patients admitted to hospital in Hong Kong. METHODS: This retrospective cohort study used real-world, territory-wide inpatient records, vaccination records, and confirmed COVID-19 case data from the Hong Kong Hospital Authority and Department of Health, The Government of the Hong Kong Special Administrative Region. Patients aged 18 years and older who tested positive for SARS-CoV-2 between March 11, 2022, and Oct 10, 2023, and who were admitted to hospital with COVID-19 were included. The treatment group included patients prescribed nirmatrelvir-ritonavir within 5 days of symptom onset, excluding those prescribed molnupiravir within 21 days, and the control group had no exposure to either nirmatrelvir-ritonavir or molnupiravir. The outcomes were post-acute inpatient death and 13 sequelae (congestive heart failure, atrial fibrillation, coronary artery disease, deep vein thrombosis, chronic pulmonary disease, acute respiratory distress syndrome, interstitial lung disease, seizure, anxiety, post-traumatic stress disorder, end-stage renal disease, acute kidney injury, and pancreatitis). These outcomes were evaluated starting at 21 days after the positive RT-PCR date in each respective cohort constructed for the outcome. Standardised mortality ratio weights were applied to balance covariates, and Cox proportional hazards regression was used to investigate the relationship between nirmatrelvir-ritonavir and outcomes. FINDINGS: 136 973 patients were screened for inclusion, among whom 50 055 were eligible and included in the analysis (24 873 [49·7%] were female and 25 182 [50·3%] were male). 15 242 patients were prescribed nirmatrelvir-ritonavir during acute COVID-19 and 23 756 patients were included in the control group; 11 057 patients did not meet our definition for the exposed and unexposed groups. Patients were followed up for a median of 393 days (IQR 317-489). In the nirmatrelvir-ritonavir group compared with the control group, there was a significantly lower hazard of post-acute inpatient death (hazard ratio 0·62 [95% CI 0·57-0·68]; p<0·0001), congestive heart failure (0·70 [0·58-0·85]; p=0·0002), atrial fibrillation (0·63 [0·52-0·76]; p<0·0001), coronary artery disease (0·71 [0·59-0·85]; p=0·0002), chronic pulmonary disease (0·68 [0·54-0·86]; p=0·0011), acute respiratory distress syndrome (0·71 [0·58-0·86]; p=0·0007), interstitial lung disease (0·17 [0·04-0·75]; p=0·020), and end-stage renal disease (0·37 [0·18-0·74]; p=0·0049). There was no evidence indicating difference between the groups in deep vein thrombosis, seizure, anxiety, post-traumatic stress disorder, acute kidney injury, and pancreatitis. INTERPRETATION: This study showed extended benefits of nirmatrelvir-ritonavir for reducing the risk of post-acute inpatient death as well as cardiovascular and respiratory complications among patients admitted to hospital with COVID-19. Further research is essential to uncover the underlying mechanisms responsible for these observed negative associations and to devise effective strategies for preventing the onset of post-acute sequelae. FUNDING: Health and Medical Research Fund, Research Grants Council theme-based research schemes, and Research Grants Council Collaborative Research Fund.

8.
Food Funct ; 15(10): 5496-5509, 2024 May 20.
Article En | MEDLINE | ID: mdl-38690869

Postbiotics have been proposed as clinically viable alternatives to probiotics, addressing limitations and safety concerns associated with probiotic use. However, direct comparisons between the functional differences and health benefits of probiotics and postbiotics remain scarce. This study compared directly the desensitization effect of probiotics and postbiotics derived from Lactiplantibacillus plantarum strain DPUL-F232 in the whey protein-induced allergic rat model. The results demonstrate that administering both live and heat killed F232 significantly alleviated allergy symptoms, reduced intestinal inflammation, and decreased serum antibody and histamine levels in rats. Both forms of F232 were effective in regulating the Th1/Th2 balance, promoting the secretion of the regulatory cytokine IL-10, inhibiting mast cell degranulation and restoring the integrity of the intestinal barrier through the upregulation of tight junction proteins. Considering the enhanced stability and reduced safety concerns of postbiotics compared to probiotics, alongside their ability to regulate allergic reactions, we suggest that postbiotics may serve as viable substitutes for probiotics in managing food allergies and potentially other diseases.


Food Hypersensitivity , Probiotics , Whey Proteins , Animals , Whey Proteins/pharmacology , Rats , Probiotics/pharmacology , Lactobacillus plantarum , Rats, Sprague-Dawley , Intestinal Mucosa/immunology , Male , Female , Hot Temperature , Humans
9.
Sci Rep ; 14(1): 11407, 2024 May 18.
Article En | MEDLINE | ID: mdl-38762538

The rapid development of ultrawideband (UWB) communication systems has resulted in increasing performance requirements for the antenna system. In addition to a wide bandwidth, fast propagation rates and compact dimensions, flexibility, wearability or portability are also desirable for UWB antennas, as are excellent notch characteristics. Although progress has been made in the development of flexible/wearable antennas desired notch properties are still rather limited. Moreover, most presently available flexible UWB antennas are fabricated using environmentally not attractive subtractive etching-based processes. The usage of facile additive sustainably inkjet printing processes also utilizing low temperature plasma-activated conductive inks is rarely reported. In addition, the currently used tri-notched flexible UWB antenna designs have a relatively large footprint, which poses difficulties when integrated into miniaturized and compact communication devices. In this work, a silver nano ink is used to fabricate the antenna via inkjet printing and an efficient plasma sintering procedure. For the targeted UWB applications miniaturized tri-notched flexible antenna is realized on a flexible polyethylene terephthalate (PET) substrate with a compact size of 17.6 mm × 16 mm × 0.12 mm. The antenna operates in the UWB frequency band (2.9-10.61 GHz), and can shield interferences from WiMAX (3.3-3.6 GHz), WLAN (5.150-5.825 GHz) and X-uplink (7.9-8.4 GHz) bands, as well as exhibits a certain of bendability. Three nested "C" slots of different sizes were adopted to achieve notch features. The simulation and test results demonstrate that the proposed antenna can generate signal radiation in the desired UWB frequency band while retaining the desired notch properties and having acceptable SAR values on-body, making it a viable candidate for usage in flexible or wearable communication transmission devices. The research provides a facile and highly efficient method for fabricating flexible/wearable UWB antennas, that is, the effective combination of inkjet printing processing, flexible substrates, low temperature-activated conductive ink and antenna structure design.

10.
Commun Med (Lond) ; 4(1): 92, 2024 May 18.
Article En | MEDLINE | ID: mdl-38762678

BACKGROUND: As SARS-CoV-2 Omicron variants circulating globally since 2022, assessing the transmission characteristics, and the protection of vaccines against emerging Omicron variants among children and adolescents are needed for guiding the control and vaccination policies. METHODS: We conducted a retrospective cohort study for SARS-CoV-2 infections and close contacts aged <18 years from an outbreak seeded by Omicron BA.5 variants. The secondary attack rate (SAR) was calculated and the protective effects of two doses of inactivated vaccine (mainly Sinopharm /BBIBP-CorV) within a year versus one dose or two doses above a year after vaccination against the transmission and infection of Omicron BA.5 were estimated. RESULTS: A total of 3442 all-age close contacts of 122 confirmed SARS-CoV-2 infections aged 0-17 years were included. The SAR was higher in the household setting and for individuals who received a one-dose inactivated vaccine or those who received a two-dose for more than one year, with estimates of 28.5% (95% credible interval [CrI]: 21.1, 37.7) and 55.3% (95% CrI: 24.4, 84.8), respectively. The second dose of inactivated vaccine conferred substantial protection against all infection and transmission of Omicron BA.5 variants within a year. CONCLUSIONS: Our findings support the rollout of the second dose of inactivated vaccine for children and adolescents during the Omciron BA.5 predominant epidemic phase. Given the continuous emergence of SARS-CoV-2 variants, monitoring the transmission risk and corresponding vaccine effectiveness against SARS-CoV-2 variants among children and adolescents is important to inform control strategy.


Children and adolescents have reported suffering less severe outcomes from the SARS-CoV-2 Omicron variant. However, the risk of transmission and vaccine effectiveness among this population group is not well studied. Here, we used contact tracing data that was collected during an Omicron BA.5 outbreak from Urumqi, China, before the exit of "zero-COVID" measures, to evaluate the spread of SARS-CoV-2 infection among those age under 18 years, and the effectiveness of inactivated vaccine regimens. Our findings indicate there is a high rate of transmission among children and adolescents in a household setting and receiving two doses of inactivated COVID-19 vaccination within a year was more effective than a single dose or two doses given more than a year apart. These findings highlight the importance of tracking transmission and vaccine effectiveness of novel SARS-CoV-2 variants in younger populations to inform control strategies.

11.
Microorganisms ; 12(5)2024 May 15.
Article En | MEDLINE | ID: mdl-38792827

Surfactin is widely used in the petroleum extraction, cosmetics, biopharmaceuticals and agriculture industries. It possesses antibacterial and antiviral activities and can reduce interfacial tension. Bacillus are commonly used as production chassis, but wild-type Bacillus subtilis 168 cannot synthesise surfactin. In this study, the phosphopantetheinyl transferase (PPTase) gene sfp* (with a T base removed) was overexpressed and enzyme activity was restored, enabling B. subtilis 168 to synthesise surfactin with a yield of 747.5 ± 6.5 mg/L. Knocking out ppsD and yvkC did not enhance surfactin synthesis. Overexpression of predicted surfactin transporter gene yfiS increased its titre to 1060.7 ± 89.4 mg/L, while overexpression of yerP, ycxA and ycxA-efp had little or negative effects on surfactin synthesis, suggesting YfiS is involved in surfactin efflux. By replacing the native promoter of the srfA operon encoding surfactin synthase with three promoters, surfactin synthesis was significantly reduced. However, knockout of the global transcriptional regulator gene codY enhanced the surfactin titre to 1601.8 ± 91.9 mg/L. The highest surfactin titre reached 3.89 ± 0.07 g/L, with the yield of 0.63 ± 0.02 g/g DCW, after 36 h of fed-batch fermentation in 5 L fermenter. This study provides a reference for further understanding surfactin synthesis and constructing microbial cell factories.

12.
Environ Sci Pollut Res Int ; 31(23): 33212-33222, 2024 May.
Article En | MEDLINE | ID: mdl-38687452

Improvement of indoor air quality is beneficial for human health. However, previous studies have not reached consistent conclusions regarding the effects of indoor air filtration on inflammation and oxidative stress. This study aims to determine the relationship between indoor air filtration and inflammation and oxidative stress biomarkers. We conducted an electronic search that evaluated the association of indoor air filtration with biomarkers of inflammation and oxidative stress in five databases (PubMed, Cochrane Library, EMBASE, Web of Science, and Scopus) from the beginning to April 23, 2023. Outcomes included the following markers: interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), C-reactive protein (CRP), malondialdehyde (MDA), 8-hydroxy-2deoxyguanosine (8-OHdG), and 8-iso-prostaglandinF2α (8-isoPGF2α). We extracted data from the included studies according to the system evaluation and the preferred reporting item for meta-analysis (PRISMA) guidelines and used the Cochrane risk of bias tool to assess bias risk. Our meta-analysis included 15 studies with 678 participants to assess the combined effect size. The meta-analysis demonstrated that indoor air filtration could have a marked reduction in IL-6 (SMD: -0.275, 95% CI: -0.545 to -0.005, p = 0.046) but had no significant effect on other markers of inflammation or oxidative stress. Subgroup analysis results demonstrated a significant reduction in 8-OHdG levels in the subgroup with < 1 day of duration (SMD: -0.916, 95% CI: -1.513 to -0.320; p = 0.003) and using filtrete air filter (SMD: -5.530, 95% CI: -5.962 to -5.099; p < 0.001). Our meta-analysis results depicted that indoor air filtration can significantly reduce levels of inflammation and oxidative stress markers. Considering the adverse effects of air pollution on human health, our study provides powerful evidence for applying indoor air filtration to heavy atmospheric pollution.


Air Pollution, Indoor , Biomarkers , Inflammation , Oxidative Stress , Humans , Randomized Controlled Trials as Topic , Air Filters , Filtration , Interleukin-6
13.
Langmuir ; 40(13): 7095-7105, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38511863

Conductive inks are one of the most important functional materials for printed flexible electronic devices, and their properties determine the methods of subsequent patterning and metallization. In comparison with copper nanoparticle or nanowire inks, copper particle-free inks employing copper(II) formate (Cuf) as a precursor have attracted the interest of researchers due to their flexibility in preparation, excellent stability, and lower conversion temperature. Alkanolamines can provide Cuf with excellent solubility in alcohols while being less toxic and having a certain reducibility, making them preferable ligands in comparison with aliphatic amines and pyridine. However, there have been few studies on the effects of the alkanolamine types on the performance of Cuf inks. Also, the decomposition mechanism of copper-alkanolamine complex inks is not clear. In this work, different kinds of alkanolamines were chosen as ligands to formulate Cuf inks to address the mentioned issues. The influences of amine types on the stability, wettability, thermal decomposition behavior, and electrical performance of the formulated Cuf particle-free inks were investigated in detail. The results show that the utilization of alkanolamines could provide Cuf with excellent solubility in alcohols, resulting in an ink with good stability and favorable wetting properties. The thermal decomposition temperature and electrical performance of the formulated copper ink are largely dependent on the amine used. When amines with a longer carbon chain and more branches were utilized to prepare the ink, a decreased decomposition temperature was observed on the derived inks because of the steric hindrance effect. Copper films with good morphology and conductivity could be obtained at low temperatures by selecting the appropriate alkanolamine. Copper particle-free conductive ink from 2-amino-2-methyl-1-propanol demonstrated better morphology and electrical performance (16.09 µΩ·cm) and was successfully used for conductive circuits by direct-writing.

14.
Bioelectrochemistry ; 157: 108679, 2024 Jun.
Article En | MEDLINE | ID: mdl-38471411

The primary objective of this study is to elucidate the synergistic effect of an exogenous redox mediator and carbon starvation on the microbiologically influenced corrosion (MIC) of metal nickel (Ni) by nitrate reducing Pseudomonas aeruginosa. Carbon source (CS) starvation markedly accelerates Ni MIC by P. aeruginosa. Moreover, the addition of exogenous riboflavin significantly decreases the corrosion resistance of Ni. The MIC rate of Ni (based on corrosion loss volume) is ranked as: 10 % CS level + riboflavin > 100 % CS level + riboflavin > 10 % CS level > 100 % CS level. Notably, starved P. aeruginosa biofilm demonstrates greater aggressiveness in contributing to the initiation of surface pitting on Ni. Under CS deficiency (10 % CS level) in the presence of riboflavin, the deepest Ni pits reach a maximum depth of 11.2 µm, and the corrosion current density (icorr) peak at approximately 1.35 × 10-5 A·cm-2, representing a 2.6-fold increase compared to the full-strength media (5.25 × 10-6 A·cm-2). For the 10 % CS and 100 % CS media, the addition of exogenous riboflavin increases the Ni MIC rate by 3.5-fold and 2.9-fold, respectively. Riboflavin has been found to significantly accelerate corrosion, with its augmentation effect on Ni MIC increasing as the CS level decreases. Overall, riboflavin promotes electron transfer from Ni to P. aeruginosa, thus accelerating Ni MIC.


Nickel , Pseudomonas aeruginosa , Corrosion , Carbon , Riboflavin/pharmacology , Biofilms
15.
BMJ Med ; 3(1): e000771, 2024.
Article En | MEDLINE | ID: mdl-38464392

Objectives: To estimate the association between the transition to daylight saving time and the risks of all cause and cause specific mortality in the US. Design: Nationwide time series observational study based on weekly data. Setting: US state level mortality data from the National Center for Health Statistics, with death counts from 50 US states and the District of Columbia, from the start of 2015 to the end of 2019. Population: 13 912 837 reported deaths in the US. Main outcome measures: Weekly counts of mortality for any cause, and for Alzheimer's disease, dementia, circulatory diseases, malignant neoplasms, and respiratory diseases. Results: During the study period, 13 912 837 deaths were reported. The analysis found no evidence of an association between the transition to spring daylight saving time (when clocks are set forward by one hour on the second Sunday of March) and the risk of all cause mortality during the first eight weeks after the transition (rate ratio 1.003, 95% confidence interval 0.987 to 1.020). Autumn daylight saving time is defined in this study as the time when the clocks are set back by one hour (ie, return to standard time) on the first Sunday of November. Evidence indicating a substantial decrease in the risk of all cause mortality during the first eight weeks after the transition to autumn daylight saving time (0.974, 0.958 to 0.990). Overall, when considering the transition to both spring and autumn daylight saving time, no evidence of any effect of daylight saving time on all cause mortality was found (0.988, 0.972 to 1.005). These patterns of changes in mortality rates associated with transition to daylight saving time were consistent for Alzheimer's disease, dementia, circulatory diseases, malignant neoplasms, and respiratory diseases. The protective effect of the transition to autumn daylight saving time on the risk of mortality was more pronounced in elderly people aged ≥75 years, in the non-Hispanic white population, and in those residing in the eastern time zone. Conclusions: In this study, transition to daylight saving time was found to affect mortality patterns in the US, but an association with additional deaths overall was not found. These findings might inform the ongoing debate on the policy of shifting daylight saving time.

16.
Gen Physiol Biophys ; 43(2): 85-102, 2024 Mar.
Article En | MEDLINE | ID: mdl-38477602

Non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disease worldwide. Chronic activation of endoplasmic reticulum stress (ERS) in hepatocytes may promote the development of NAFLD, yet endoplasmic reticulum stress-related genes (ERSGs) have not been studied in NAFLD. Our aim is to study the relationship between ERSGs and the immune microenvironment of NAFLD patients and to construct predictive models. We screened 48 endoplasmic reticulum stress-related differentially expressed genes (ERSR-DEGs) using data from two GEO datasets and the GeneCards database. Enrichment analysis revealed that ERSR-DEGs are closely associated with immune-related pathways and functions. The immune infiltration profile of NAFLD was obtained by single sample gene set enrichment analysis (ssGSEA). There were significant differences in immune cell infiltration and immune function between NAFLD group and control group. Using 113 NAFLD samples, we explored two molecular clusters based on ERSR-DEGs. A five-gene SVM model was selected as the best machine learning model, and a nomogram based on five-gene SVM model showed good predictive efficiency. The mRNA expression levels of POR, PPP1R15A, FOS and FAS were significantly different between NAFLD mice and healthy mice. In conclusion, ERS is closely associated with the development of NAFLD. We established a promising and SVM-based predictive model to assess the risk of disease in patients with ERS subtypes and NAFLD.


Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Endoplasmic Reticulum Stress/genetics , Hepatocytes
17.
Int J Biol Sci ; 20(5): 1905-1926, 2024.
Article En | MEDLINE | ID: mdl-38481802

Increasing evidence suggests that autophagy plays a major role during renal fibrosis. Transcription factor EB (TFEB) is a critical regulator of autophagy- and lysosome-related gene transcription. However, the pathophysiological roles of TFEB in renal fibrosis and fine-tuned mechanisms by which TFEB regulates fibrosis remain largely unknown. Here, we found that TFEB was downregulated in unilateral ureteral obstruction (UUO)-induced human and mouse fibrotic kidneys, and kidney-specific TFEB overexpression using recombinant AAV serotype 9 (rAAV9)-TFEB in UUO mice alleviated renal fibrosis pathogenesis. Mechanically, we found that TFEB's prevention of extracellular matrix (ECM) deposition depended on autophagic flux integrity and its subsequent blockade of G2/M arrest in tubular cells, rather than the autophagosome synthesis. In addition, we together RNA-seq with CUT&Tag analysis to determine the TFEB targeted gene ATP6V0C, and revealed that TFEB was directly bound to the ATP6V0C promoter only at specific site to promote its expression through CUT&Run-qPCR and luciferase reporter assay. Interestingly, TFEB induced autophagic flux integrity, mainly dependent on scaffold protein ATP6V0C-mediated autophagosome-lysosome fusion by bridging with STX17 and VAMP8 (major SNARE complex) by co-immunoprecipitation analysis, rather than its mediated lysosomal acidification and degradation function. Moreover, we further investigated the underlying mechanism behind the low expression of TEFB in UUO-induced renal fibrosis, and clearly revealed that TFEB suppression in fibrotic kidney was due to DNMT3a-associated TFEB promoter hypermethylation by utilizing methylation specific PCR (MSP) and bisulfite-sequencing PCR (BSP), which could be effectively recovered by 5-Aza-2'-deoxycytidine (5A-za) to alleviate renal fibrosis pathogenesis. These findings reveal for the first time that impaired TFEB-mediated autophagosome-lysosome fusion disorder, tubular cell G2/M arrest and renal fibrosis appear to be sequentially linked in UUO-induced renal fibrosis and suggest that DNMT3a/TFEB/ATP6V0C may serve as potential therapeutic targets to prevent renal fibrosis.


Kidney Diseases , Ureteral Obstruction , Vacuolar Proton-Translocating ATPases , Animals , Humans , Mice , Apoptosis , Autophagy/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cell Line, Tumor , Fibrosis , G2 Phase Cell Cycle Checkpoints , Kidney Diseases/metabolism , Lysosomes/metabolism , SNARE Proteins/metabolism , SNARE Proteins/pharmacology , Ureteral Obstruction/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/pharmacology
18.
Angew Chem Int Ed Engl ; 63(15): e202319758, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38353649

Fluorinated small molecules are commonly used in functional small-molecule chemistry, and N-difluoromethyl (N-CF2H) compounds are particularly intriguing due to their unique and unexplored physiochemical properties. However, despite limited progress, a general methodological approach to the synthesis of N-CF2H compounds remains elusive. Here, guided by computation, we present a simple and practical protocol to access N-CF2H amides and related carbonyl derivatives. The protocol involves a one-pot conversion of thioformamides through desulfurization-fluorination and acylation, providing N-difluoromethylcarbamoyl fluoride building blocks that can be further diversified to a variety of unexplored N-CF2H carbonyl compounds with rich functionality. Additionally, preliminary studies on their properties and stability showcased their potential application in pharmaceuticals and agrochemicals.

19.
Ecol Appl ; 34(3): e2944, 2024 Apr.
Article En | MEDLINE | ID: mdl-38379442

In China, the Grain for Green Program (GGP) is an ambitious project to convert croplands into natural vegetation, but exactly how changes in vegetation translate into changes in soil organic carbon remains less clear. Here we conducted a meta-analysis using 734 observations to explore the effects of land recovery on soil organic carbon and nutrients in four provinces in Southwest China. Following GGP, the soil organic carbon content (SOCc) and soil organic carbon stock (SOCs) increased by 33.73% and 22.39%, respectively, compared with the surrounding croplands. Similarly, soil nitrogen increased, while phosphorus decreased. Outcomes were heterogeneous, but depended on variations in soil and environmental characteristics. Both the regional land use and cover change indicated by the landscape type transfer matrix and net primary production from 2000 to 2020 further confirmed that the GGP promoted the forest area and regional mean net primary production. Our findings suggest that the GGP could enhance soil and vegetation carbon sequestration in Southwest China and help to develop a carbon-neutral strategy.


Carbon , Soil , Carbon/analysis , Forests , Edible Grain , China
20.
Nat Commun ; 15(1): 1494, 2024 Feb 19.
Article En | MEDLINE | ID: mdl-38374305

Mechanoelectrical energy conversion is a potential solution for the power supply of miniaturized wearable and implantable systems; yet it remains challenging due to limited current output when exploiting low-frequency motions with soft devices. We report a design of a hydrogel generator with mechanoionic current generation amplified by orders of magnitudes with engineered structural and chemical asymmetry. Under compressive loading, relief structures in the hydrogel intensify net ion fluxes induced by deformation gradient, which synergize with asymmetric ion adsorption characteristics of the electrodes and distinct diffusivity of cations and anions in the hydrogel matrix. This engineered mechanoionic process can yield 4 mA (5.5 A m-2) of peak current under cyclic compression of 80 kPa applied at 0.1 Hz, with the transferred charge reaching up to 916 mC m-2 per cycle. The high current output of this miniaturized hydrogel generator is beneficial for the powering of wearable devices, as exemplified by a controlled drug-releasing system for wound healing. The demonstrated mechanisms for amplifying mechanoionic effect will enable further designs for a variety of self-powered biomedical systems.

...