Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Environ Int ; 29(2-3): 385-92, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12676231

ABSTRACT

Ozone effects on plants depend on atmospheric transport and stomatal uptake. Thus, ozone-risk assessments should use measured ozone concentrations and account for the influence of atmospheric conditions and soil moisture on stomatal and nonstomatal ozone deposition. This requires disaggregated data for the physical input parameters and species-specific data for specific stomatal conductance (g(s)). In this study, an approach was developed based on a resistance analogue transport model. This model requires interpolated routine-measuring data for ozone concentration at 3-5 m height, wind speed, precipitation, and soil moisture content as inputs to estimate the amount of ozone taken up by wheat (Triticum aestivum) and grass/clover pastures with a 1x1-km resolution. The model was applied to the area under agricultural production in Switzerland. Using data for June 1994, the calculations revealed that the median of the distribution of stomatal ozone uptake was 88% higher in wheat compared to grassland. This was mainly due to the higher maximum stomatal conductance in wheat. Because ozone flux to soil and to external plant surfaces was comparable in both vegetation types, the difference in the stomatal fluxes was mainly responsible for distinct differences in flux partitioning. In both cases, only about 11% of the total cumulative flux was absorbed by external plant surfaces, whereas the soil was a strong sink responsible for as much as 50% of the total flux into grasslands. The higher-ozone flux to wheat resulted in clearly lower-ozone concentrations at canopy height, but no significant correlation between cumulative canopy-level ozone exposure, expressed as accumulated exposure above 40 ppb (AOT40), and stomatal uptake was found. Thus, to estimate the ozone risk for crops using a flux-based approach may lead to results that differ substantially from those obtained with a concentration-based approach.


Subject(s)
Models, Theoretical , Oxidants, Photochemical/pharmacokinetics , Ozone/pharmacokinetics , Triticum/physiology , Ecosystem , Forecasting , Oxidants, Photochemical/analysis , Ozone/analysis , Plant Leaves , Poaceae , Risk Assessment , Sensitivity and Specificity , Triticum/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...