Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Biol Macromol ; 278(Pt 2): 134703, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39151853

ABSTRACT

New hybrid hydrogel composites based on a mixture of natural polysaccharides (sodium alginate, κ-carrageenan, and chitosan) filled with the clay mineral of natural origin, montmorillonite (MMT), were studied. The structure of intercalated/flocculated MMT distribution in the interpenetrating network of polysaccharide matrix was characterized using FTIR, X-ray diffraction, and SEM techniques. Swelling kinetics was investigated using the weight analysis, whereas the phase transition of water in the composition of hybrid hydrogels, by DSC method. Their biosafety was estimated using the Nelyubov method, germination test on cress (L. sativum) seeds, and metabolic fingerprinting of microbial communities and dehydrogenase assay. The obtained results indicated promising water-retaining properties of the synthesized materials. The hydrogels had a good sorption affinity for cadmium (Cd) ions confining bioavailability of the selected toxic heavy metal. They were safe for soil microorganisms and did not generate metabolic stress for them. Moreover, they did not reduce the viability of pea seeds. Thus, the development of biosafe hybrid hydrogel composites with a comprehensive, good effect on the environment could be considered as successful.


Subject(s)
Alginates , Bentonite , Biocompatible Materials , Carrageenan , Chitosan , Hydrogels , Hydrogels/chemistry , Hydrogels/chemical synthesis , Chitosan/chemistry , Bentonite/chemistry , Carrageenan/chemistry , Alginates/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Clay/chemistry , Cadmium/chemistry , Seeds/chemistry , Adsorption
2.
Chemosphere ; 362: 142917, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39043269

ABSTRACT

Due to the extensive application of pesticides and their hazardous effects on organisms, there is an urgent need to remove them effectively from wastewater. Metal-incorporated carbon-mineral composites (Ni/Mn-CMC and Ni/Fe-CMC) described in this paper can certainly be applied for this purpose. They were synthesized by combining mechanochemical and pyrolytic processes and their physicochemical properties were investigated using numerous methods (SEM-EDS, N2 adsorption/desorption, XRD, surface charge, FTIR). Adsorption capacity towards diuron and carboxin with and without impurities commonly detected in natural ecosystems, cadmium ions or arsenite, was measured. The obtained results indicated that Ni/Fe-CMC is more efficient adsorbent of pesticides due to its well-developed surface. It was able to bind 158.34 mg g-1 of diuron and 133.58 mg g-1 of carboxin in the solutions, where only one pesticide was present. In turn, these values for the Ni/Mn-CMC sample were 126.49 mg g-1 and 102.08 mg g-1, respectively. It should be noted that the composites maintained their high adsorption capacity in the multicomponent solutions, i.e., containing both pesticide and metal ions. Then, the maximum reduction in pesticide adsorption was only 8.36. Ni/Mn-CMC and Ni/Fe-CMC were successfully regenerated with ethanol without changing their structure and adsorption capacity. Also, the extracts from investigated materials did not have negative impact on plant growth. This confirmed suitability of carbon-mineral composites for repeated multiple use without toxic effects to organisms.


Subject(s)
Carbon , Nickel , Pesticides , Water Pollutants, Chemical , Adsorption , Water Pollutants, Chemical/chemistry , Nickel/chemistry , Pesticides/chemistry , Carbon/chemistry , Minerals/chemistry , Wastewater/chemistry , Iron/chemistry , Manganese/chemistry , Diuron/chemistry
3.
Polymers (Basel) ; 15(24)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38139926

ABSTRACT

The objective of this research was to develop highly effective conductive polymer composite (CPC) materials for flexible piezoresistive sensors, utilizing hollow three-dimensional graphitic shells as a highly conductive particulate component. Polystyrene (PS), a cost-effective and robust polymer widely used in various applications such as household appliances, electronics, automotive parts, packaging, and thermal insulation materials, was chosen as the polymer matrix. The hollow spherical three-dimensional graphitic shells (GS) were synthesized through chemical vapor deposition (CVD) with magnesium oxide (MgO) nanoparticles serving as a support, which was removed post-synthesis and employed as the conductive filler. Commercial multi-walled carbon nanotubes (CNTs) were used as a reference one-dimensional graphene material. The main focus of this study was to investigate the impact of the GS on the piezoresistive response of carbon/polymer composite thin films. The distribution and arrangement of GS and CNTs in the polymer matrix were analyzed using techniques such as X-ray diffraction and scanning electron microscopy, while the electrical, thermal, and mechanical properties of the composites were also evaluated. The results revealed that the PS composite films filled with GS exhibited a more pronounced piezoresistive response as compared to the CNT-based composites, despite their lower mechanical and thermal performance.

SELECTION OF CITATIONS
SEARCH DETAIL