Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Publication year range
1.
BMC Plant Biol ; 24(1): 691, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39030468

ABSTRACT

BACKGROUND: Kentucky bluegrass (Poa pratensis L.) panicle development is a coordinated process of cell proliferation and differentiation with distinctive phases and architectural changes that are pivotal to determine seed yield. Cytokinin (CK) is a key factor in determining seed yield that might underpin the second "Green Revolution". However, whether there is a difference between endogenous CK content and seed yields of Kentucky bluegrass, and how CK-related genes are expressed to affect enzyme regulation and downstream seed yield in Kentucky bluegrass remains enigmatic. RESULTS: In order to establish a potential link between CK regulation and seed yield, we dissected and characterized the Kentucky bluegrass young panicle, and determined the changes in nutrients, 6 types of endogenous CKs, and 16 genes involved in biosynthesis, activation, inactivation, re-activation and degradation of CKs during young panicle differentiation of Kentucky bluegrass. We found that high seed yield material had more meristems compared to low seed yield material. Additionally, it was found that seed-setting rate (SSR) and lipase activity at the stage of spikelet and floret primordium differentiation (S3), as well as 1000-grain weight (TGW) and zeatin-riboside (ZR) content at the stages of first bract primordium differentiation (S1) and branch primordium differentiation (S2) showed a significantly positive correlation in the two materials. And zeatin, ZR, dihydrozeatin riboside, isopentenyl adenosine and isopentenyl adenosine riboside contents were higher in seed high yield material than those in seed low yield material at S3 stage. Furthermore, the expressions of PpITP3, PpITP5, PpITP8 and PpLOG1 were positively correlated with seed yield, while the expressions of PpCKX2, PpCKX5 and PpCKX7 were negatively correlated with seed yield in Kentucky bluegrass. CONCLUSIONS: Overall, our study established a relationship between CK and seed yield in Kentucky bluegrass. Perhaps we can increase SSR and TGW by increasing lipase activity and ZR content. Of course, using modern gene editing techniques to manipulate CK related genes such as PpITP3/5/8, PpLOG1 and PpCKX2/5/7, will be a more direct and effective method in Kentucky bluegrass, which requires further trial validation.


Subject(s)
Cytokinins , Gene Expression Regulation, Plant , Poa , Seeds , Cytokinins/metabolism , Seeds/growth & development , Seeds/genetics , Poa/genetics , Poa/growth & development , Poa/metabolism , Plant Growth Regulators/metabolism , Genes, Plant
2.
BMC Genomics ; 24(1): 498, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37644390

ABSTRACT

BACKGROUND: Alfalfa (Medicago sativa) is the most widely planted legume forage and one of the most economically valuable crops in the world. The periodic changes in its growth and development and abiotic stress determine its yield and economic benefits. Auxin controls many aspects of alfalfa growth by regulating gene expression, including organ differentiation and stress response. Auxin response factors (ARF) are transcription factors that play an essential role in auxin signal transduction and regulate the expression of auxin-responsive genes. However, the function of ARF transcription factors is unclear in autotetraploid-cultivated alfalfa. RESULT: A total of 81 ARF were identified in the alfalfa genome in this study. Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed, identifying that ARF genes are mainly involved in transcriptional regulation and plant hormone signal transduction pathways. Phylogenetic analysis showed that MsARF was divided into four clades: I, II, III, and IV, each containing 52, 13, 7, and 9 genes, respectively. The promoter region of the MsARF gene contained stress-related elements, such as ABRE, TC-rich repeats, MBS, LTR. Proteins encoded by 50 ARF genes were localized in the nucleus without guide peptides, signal peptides, or transmembrane structures, indicating that most MsARF genes are not secreted or transported but only function in the nucleus. Protein structure analysis revealed that the secondary and tertiary structures of the 81 MsARF genes varied. Chromosomal localization analysis showed 81 MsARF genes were unevenly distributed on 25 chromosomes, with the highest distribution on chromosome 5. Furthermore, 14 segmental duplications and two sets of tandem repeats were identified. Expression analysis indicated that the MsARF was differentially expressed in different tissues and under various abiotic stressors. The quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis showed that the expression profiles of 23 MsARF genes were specific to abiotic stresses such as drought, salt, high temperature, and low temperature, as well as tissue-specific and closely related to the duration of stress. CONCLUSION: This study identified MsARF in the cultivated alfalfa genome based on the autotetraploid level, which GO, KEGG analysis, phylogenetic analysis, sequence characteristics, and expression pattern analysis further confirmed. Together, these findings provide clues for further investigation of MsARF functional verification and molecular breeding of alfalfa. This study provides a novel approach to systematically identify and characterize ARF transcription factors in autotetraploid cultivated alfalfa, revealing 23 MsARF genes significantly involved in response to various stresses.


Subject(s)
Indoleacetic Acids , Medicago sativa , Medicago sativa/genetics , Phylogeny , Plant Growth Regulators , Stress, Physiological/genetics
3.
Huan Jing Ke Xue ; 37(11): 4395-4401, 2016 Nov 08.
Article in Chinese | MEDLINE | ID: mdl-29964697

ABSTRACT

In order to study the distribution characteristics and pollution status of antibiotic resistance genes (ARGs) in the vegetable soils, greenhouse and field soil samples in 11 organic vegetable bases with long-term manure amended in Beijing were collected. All samples were subjected to the determination of 13-type antibiotics and related ARGs. The experimental results showed that tetracycline residues were the highest among all antibiotics tested, followed by sulfanilamides. Antibiotic residues were higher in greenhouse soils than in field soils. For all soil samples, sulfanilamide resistance genes sul 1 and sul 2, as well as the tetracycline resistance gene tetL were observed with 100% detection frequencies. Detection frequency for class I integron (intI 1) in greenhouse soils was 1.5 times higher than that in field soils. The relative abundance for sul 2 and tetL in soil samples ranged 10-4-10-2 as found by quantitative PCR (qPCR) detection. The relative abundance of sul 2 was significantly positively correlated with the contents of sulfadimidine and doxycycline (P<0.05), and the relative abundance of tetL did not exhibit evident correlation with the contents of antibiotics tested. These results would contribute to understanding of the pollution status of ARGs in vegetable soils in Beijing, and to evaluation of currently agricultural practices based on ARGs.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Genes, Bacterial , Soil Microbiology , Beijing , Manure , Microbial Sensitivity Tests , Soil , Vegetables
SELECTION OF CITATIONS
SEARCH DETAIL