Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 12: 656657, 2021.
Article in English | MEDLINE | ID: mdl-34211484

ABSTRACT

The biological significance of non-coding RNAs (ncRNAs) has been firmly established to be important for the regulation of genes involved in stress acclimation. Light plays an important role for the growth of plants providing the energy for photosynthesis; however, excessive light conditions can also cause substantial defects. Small RNAs (sRNAs) are a class of non-coding RNAs that regulate transcript levels of protein-coding genes and mediate epigenetic silencing. Next generation sequencing facilitates the identification of small non-coding RNA classes such as miRNAs (microRNAs) and small-interfering RNAs (siRNAs), and long non-coding RNAs (lncRNAs), but changes in the ncRNA transcriptome in response to high light are poorly understood. We subjected Arabidopsis plants to high light conditions and performed a temporal in-depth study of the transcriptome data after 3 h, 6 h, and 2 days of high light treatment. We identified a large number of high light responsive miRNAs and sRNAs derived from NAT gene pairs, lncRNAs and TAS transcripts. We performed target predictions for differentially expressed miRNAs and correlated their expression levels through mRNA sequencing data. GO analysis of the targets revealed an overrepresentation of genes involved in transcriptional regulation. In A. thaliana, sRNA-mediated regulation of gene expression in response to high light treatment is mainly carried out by miRNAs and sRNAs derived from NAT gene pairs, and from lncRNAs. This study provides a deeper understanding of sRNA-dependent regulatory networks in high light acclimation.

2.
Plant J ; 104(1): 138-155, 2020 09.
Article in English | MEDLINE | ID: mdl-32639635

ABSTRACT

Chloroplast perturbations activate retrograde signalling pathways, causing dynamic changes of gene expression. Besides transcriptional control of gene expression, different classes of small non-coding RNAs (sRNAs) act in gene expression control, but comprehensive analyses regarding their role in retrograde signalling are lacking. We performed sRNA profiling in response to norflurazon (NF), which provokes retrograde signals, in Arabidopsis thaliana wild type (WT) and the two retrograde signalling mutants gun1 and gun5. The RNA samples were also used for mRNA and long non-coding RNA profiling to link altered sRNA levels to changes in the expression of their cognate target RNAs. We identified 122 sRNAs from all known sRNA classes that were responsive to NF in the WT. Strikingly, 142 and 213 sRNAs were found to be differentially regulated in both mutants, indicating a retrograde control of these sRNAs. Concomitant with the changes in sRNA expression, we detected about 1500 differentially expressed mRNAs in the NF-treated WT and around 900 and 1400 mRNAs that were differentially regulated in the gun1 and gun5 mutants, with a high proportion (~30%) of genes encoding plastid proteins. Furthermore, around 20% of predicted miRNA targets code for plastid-localised proteins. Among the sRNA-target pairs, we identified pairs with an anticorrelated expression as well pairs showing other expressional relations, pointing to a role of sRNAs in balancing transcriptional changes upon retrograde signals. Based on the comprehensive changes in sRNA expression, we assume a considerable impact of sRNAs in retrograde-dependent transcriptional changes to adjust plastidic and nuclear gene expression.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/metabolism , DNA-Binding Proteins/physiology , Lyases/physiology , RNA, Plant/genetics , RNA, Small Untranslated/genetics , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis Proteins/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Plant , Lyases/metabolism , RNA, Plant/metabolism , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , RNA, Small Untranslated/metabolism , Sequence Analysis, RNA , Signal Transduction/genetics , Signal Transduction/physiology
3.
BMC Plant Biol ; 20(1): 298, 2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32600430

ABSTRACT

BACKGROUND: Cold stress causes dynamic changes in gene expression that are partially caused by small non-coding RNAs since they regulate protein coding transcripts and act in epigenetic gene silencing pathways. Thus, a detailed analysis of transcriptional changes of small RNAs (sRNAs) belonging to all known sRNA classes such as microRNAs (miRNA) and small interfering RNA (siRNAs) in response to cold contributes to an understanding of cold-related transcriptome changes. RESULT: We subjected A. thaliana plants to cold acclimation conditions (4 °C) and analyzed the sRNA transcriptomes after 3 h, 6 h and 2 d. We found 93 cold responsive differentially expressed miRNAs and only 14 of these were previously shown to be cold responsive. We performed miRNA target prediction for all differentially expressed miRNAs and a GO analysis revealed the overrepresentation of miRNA-targeted transcripts that code for proteins acting in transcriptional regulation. We also identified a large number of differentially expressed cis- and trans-nat-siRNAs, as well as sRNAs that are derived from long non-coding RNAs. By combining the results of sRNA and mRNA profiling with miRNA target predictions and publicly available information on transcription factors, we reconstructed a cold-specific, miRNA and transcription factor dependent gene regulatory network. We verified the validity of links in the network by testing its ability to predict target gene expression under cold acclimation. CONCLUSION: In A. thaliana, miRNAs and sRNAs derived from cis- and trans-NAT gene pairs and sRNAs derived from lncRNAs play an important role in regulating gene expression in cold acclimation conditions. This study provides a fundamental database to deepen our knowledge and understanding of regulatory networks in cold acclimation.


Subject(s)
Acclimatization/genetics , Arabidopsis/genetics , RNA, Plant/physiology , RNA, Small Untranslated/physiology , Arabidopsis/physiology , Cold Temperature , Gene Expression Regulation, Plant , Gene Ontology , Gene Regulatory Networks , Genes, Plant , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...