Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
Plant Cell Physiol ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38943636

ABSTRACT

Root parasitic plants in the Orobancheceae, such as Striga and Orobanche, cause significant damage to crop production. The germination step of these root parasitic plants is induced by host-root-derived strigolactones (SLs). After germination, the radicles elongate toward the host and invade the host root. We have previously discovered that a simple amino acid, tryptophan (Trp), as well as its metabolite, the plant hormone indole-3-acetic acid (IAA), can inhibit radicle elongation of Orobanche minor. These results suggest that auxin plays a crucial role in the radicle elongation step in root parasitic plants. In this report, we used various auxin chemical probes to dissect the auxin function in the radicle growth of O. minor and Striga hermonthica. We found that synthetic auxins inhibited radicle elongation. In addition, auxin receptor antagonist, auxinole, rescued the inhibition of radicle growth by exogenous IAA. Moreover, a polar transport inhibitor of auxin, N-1-naphthylphthalamic acid (NPA), affected radicle bending. We also proved that exogenously applied Trp is converted into IAA in O. minor seeds, and auxinole partly rescued this radicle elongation. Our data demonstrate a pivotal role of auxin in radicle growth. Thus, manipulation of auxin function in root parasitic plants should offer a useful approach to combat these parasites.

2.
Angew Chem Int Ed Engl ; 63(27): e202400218, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38658314

ABSTRACT

Synthetic modulators of plant 14-3-3s are promising chemical tools both for understanding the 14-3-3-related signaling pathways and controlling plant physiology. Herein, we describe a novel small-molecule inhibitor for 14-3-3 proteins of Arabidopsis thaliana. The inhibitor was identified from unexpected products in a stock solution in dimethyl sulfoxide (DMSO) of an in-house chemical library. Mass spectroscopy, mutant-based analyses, fluorescence polarization assays, and thermal shift assays revealed that the inhibitor covalently binds to an allosteric site of 14-3-3 with isoform selectivity. Moreover, infiltration of the inhibitor to Arabidopsis leaves suppressed the stomatal aperture. The inhibitor should provide new insight into the design of potent and isoform-selective 14-3-3 modulators.


Subject(s)
14-3-3 Proteins , Arabidopsis , Protein Isoforms , 14-3-3 Proteins/metabolism , 14-3-3 Proteins/antagonists & inhibitors , 14-3-3 Proteins/chemistry , Arabidopsis/metabolism , Arabidopsis/drug effects , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Arabidopsis Proteins/antagonists & inhibitors , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/chemistry , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/metabolism , Molecular Structure , Drug Discovery , Plant Leaves/chemistry , Plant Leaves/metabolism
3.
J Org Chem ; 89(10): 6714-6722, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38669291

ABSTRACT

The regioselective modification of polyols allows rapid access to their derivatives, thereby accelerating the polyol-related biology and drug discovery. We previously reported that benzoxaborole is a potent catalyst for the regioselective modification of polyols containing a cis-1,2-diol structure. In this study, we developed a bifunctional benzoxaborole catalyst embedded with a Lewis base. Benzoxaborole and Lewis base groups were designed to cooperatively activate a substrate (cis-1,2-diol) and reactant (electrophile), respectively, hence lowering the reaction barrier for the cis-1,2-diol moiety. The bifunctional catalyst indeed exhibited a significantly higher catalytic activity and selectivity for cis-1,2-diol modifications rather than a benzoxaborole catalyst without a Lewis base group. Mechanistic analyses, using both experimental and theoretical methods, supported the design of our catalyst. The bifunctional catalyst reported herein would be a new tool for the straightforward synthesis of polyol derivatives.

4.
Chemistry ; 29(53): e202302594, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37607317

ABSTRACT

Invited for the cover of this issue are Takashi Kyotani, Tetsuji Itoh and co-workers at Tohoku University, Gunma University and AIST. The image depicts the synthesis of water-dispersible carbon nano-test tubes by using a template technique and the selective adsorption of DNA into the inner space of these test tubes. Read the full text of the article at 10.1002/chem.202301422.


Subject(s)
Carbon , DNA , Humans , Adsorption , Universities , Water
5.
Plant Cell Physiol ; 64(10): 1167-1177, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37498972

ABSTRACT

Plant seedlings adjust the growth of the hypocotyl in response to surrounding environmental changes. Genetic studies have revealed key players and pathways in hypocotyl growth, such as phytohormones and light signaling. However, because of genetic redundancy in the genome, it is expected that not-yet-revealed mechanisms can be elucidated through approaches different from genetic ones. Here, we identified a small compound, HYGIC (HG), that simultaneously induces hypocotyl elongation and thickening, accompanied by increased nuclear size and enlargement of cortex cells. HG-induced hypocotyl growth required the ethylene signaling pathway activated by endogenous ethylene, involving CONSTITUTIVE PHOTOMORPHOGENIC 1, ETHYLENE INSENSITIVE 2 (EIN2) and redundant transcription factors for ethylene responses, ETHYLENE INSENSITIVE 3 (EIN3) and EIN3 LIKE 1. By using EBS:GUS, a transcriptional reporter of ethylene responses based on an EIN3-binding-cis-element, we found that HG treatment ectopically activates ethylene responses at the epidermis and cortex of the hypocotyl. RNA-seq and subsequent gene ontology analysis revealed that a significant number of HG-induced genes are related to responses to hypoxia. Indeed, submergence, a representative environment where the hypoxia response is induced in nature, promoted ethylene-signaling-dependent hypocotyl elongation and thickening accompanied by ethylene responses at the epidermis and cortex, which resembled the HG treatment. Collectively, the identification and analysis of HG revealed that ectopic responsiveness to ethylene promotes hypocotyl growth, and this mechanism is activated under submergence.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Hypocotyl/metabolism , DNA-Binding Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Signal Transduction/physiology , Ethylenes/pharmacology , Ethylenes/metabolism , Hypoxia , Gene Expression Regulation, Plant
6.
Chemistry ; 29(53): e202301422, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37392079

ABSTRACT

Water-dispersible carbon nano-test tubes (CNTTs) with an inner and outer diameter of about 25 and 35 nm, respectively, were prepared by the template technique and then their inner carbon surface was selectively oxidized to introduce carboxy groups. The adsorption behavior of DNA molecules on the oxidized CNTTs (Ox-CNTTs) was examined in the presence of Ca2+ cations. Many DNA molecules are attracted to the inner space of Ox-CNTTs based on the Ca2+ -mediated electrostatic interaction between DNA phosphate groups and carboxylate anions on the inner carbon surface. Moreover, the total net charge of the DNA adsorbed was found to be equal to the total charge of the carboxylate anions. This selective adsorption into the interior of Ox-CNTTs can be explained from the fact that the electrostatic interaction onto the inner concave surface is much stronger than that on the outer convex surface. On the other hand, the desorption of DNA easily occurs whenever Ca2+ cations are removed by washing with deionized water. Thus, each of Ox-CNTTs works well as a nano-container for a large amount of DNA molecules, thereby resulting in the occurrence of DNA enrichment in the nanospace.


Subject(s)
Carbon , Water , Anions , DNA , Cations , Adsorption
7.
Front Plant Sci ; 14: 1099587, 2023.
Article in English | MEDLINE | ID: mdl-36968385

ABSTRACT

Plants retain the ability to generate a pluripotent tissue called callus by dedifferentiating somatic cells. A pluripotent callus can also be artificially induced by culturing explants with hormone mixtures of auxin and cytokinin, and an entire body can then be regenerated from the callus. Here we identified a pluripotency-inducing small compound, PLU, that induces the formation of callus with tissue regeneration potency without the external application of either auxin or cytokinin. The PLU-induced callus expressed several marker genes related to pluripotency acquisition via lateral root initiation processes. PLU-induced callus formation required activation of the auxin signaling pathway though the amount of active auxin was reduced by PLU treatment. RNA-seq analysis and subsequent experiments revealed that Heat Shock Protein 90 (HSP90) mediates a significant part of the PLU-initiated early events. We also showed that HSP90-dependent induction of TRANSPORT INHIBITOR RESPONSE 1, an auxin receptor gene, is required for the callus formation by PLU. Collectively, this study provides a new tool for manipulating and investigating the induction of plant pluripotency from a different angle from the conventional method with the external application of hormone mixtures.

8.
Biochem Biophys Res Commun ; 649: 110-117, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36764113

ABSTRACT

DWARF14 (D14) and HTL/KAI2 (KAI2) are paralogous receptors in the α/ß-hydrolase superfamily. D14 is the receptor for a class of plant hormones, strigolactones (SLs), and KAI2 is the receptor for the smoke-derived seed germination inducer, Karrikin (KAR), in Arabidopsis. Germinone (Ger) was previously reported as a KAI2 agonist with germination-inducing activity for thermo-inhibited Arabidopsis seed. However, Ger was not specific to KAI2, and could also bind to D14. It was reported that SL analogs with a desmethyl-type D-ring structure are specifically recognized by KAI2. On the basis of this observation, we synthesized a desmethyl-type germinone (dMGer). We found that dMGer is highly specific to KAI2. Moreover, dMGer induced Arabidopsis seed germination more effectively than did Ger. In addition, dMGer induced the seed germination of Arabidopsis in a manner independently of GA, a well-known germination inducer in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Germination , Arabidopsis Proteins/metabolism , Gibberellins/pharmacology , Gibberellins/metabolism , Seeds/metabolism , Hydrolases/metabolism , Lactones/pharmacology
9.
Chem Commun (Camb) ; 58(11): 1685-1688, 2022 Feb 03.
Article in English | MEDLINE | ID: mdl-34909805

ABSTRACT

Here, we report the installation of 1,8-naphthalimide dyes in live cell imaging of plants. We developed a series of 1,8-naphthalimide-based probes that illuminate different subcellular compartments by altering their spectral characteristics. Simple infiltration of the probes into leaves rapidly visualized the structure of chloroplasts or the vacuole. We further demonstrated that these probes are applicable to monitor the organelle behaviors in an autophagy pathway.


Subject(s)
Naphthalimides
10.
Biochim Biophys Acta Gen Subj ; 1865(8): 129916, 2021 08.
Article in English | MEDLINE | ID: mdl-33932484

ABSTRACT

Mitochondria play a central role in primary metabolism in plants as well as in heterotrophic eukaryotes. Plants must control the quality and number of mitochondria in response to a changing environment, across cell types and developmental stages. Mitophagy is defined as the degradation of mitochondria by autophagy, an evolutionarily conserved system for the removal and recycling of intracellular components. Recent studies have highlighted the importance of mitophagy in plant stress responses. This review article summarizes our current knowledge of plant mitophagy and discusses the underlying mechanisms. In plants, chloroplasts cooperate with mitochondria for energy production, and autophagy also targets chloroplasts through a process known as chlorophagy. Advances in plant autophagy studies now allow a comparative analysis of the autophagic turnover of mitochondria and chloroplasts, via the selective degradation of their soluble proteins, fragments, or entire organelles.


Subject(s)
Mitochondria/pathology , Mitophagy , Oxidative Stress , Plant Physiological Phenomena , Plants/metabolism , Mitochondria/metabolism
11.
Plant Cell Physiol ; 62(4): e1-e31, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-33594417

ABSTRACT

Intraorganellar proteases and cytoplasmic proteolytic systems such as autophagy orchestrate the degradation of organellar proteins to ensure organelle homeostasis in eukaryotic cells. The green alga Chlamydomonas reinhardtii is an ideal unicellular model organism for elucidating the mechanisms maintaining proteostasis in chloroplasts. However, the autophagic pathways targeting the photosynthetic organelles of these algae have not been clearly elucidated. Here, we explored the role of autophagy in chloroplast protein degradation in Chlamydomonas cells. We labeled the chloroplast protein Rubisco small subunit (RBCS) with the yellow fluorescent protein Venus in a Chlamydomonas strain in which expression of the chloroplast gene clpP1, encoding a major catalytic subunit of the chloroplast Clp protease, can be conditionally repressed to selectively perturb chloroplast protein homeostasis. We observed transport of both nucleus-encoded RBCS-Venus fusion protein and chloroplast-encoded Rubisco large subunit (rbcL) from the chloroplast to the vacuoles in response to chloroplast proteotoxic stress induced by clpP1 inhibition. This process was retarded by the addition of autophagy inhibitors. Biochemical detection of lytic cleavage of RBCS-Venus supported the notion that Rubisco is degraded in the vacuoles via autophagy. Electron microscopy revealed vacuolar accumulation of autophagic vesicles and exposed their ultrastructure during repression of clpP1 expression. Treatment with an autophagy activator also induced chloroplast autophagy. These results indicate that autophagy contributes to chloroplast protein degradation in Chlamydomonas cells.

12.
Plant Cell Physiol ; 62(2): 229-247, 2021 May 11.
Article in English | MEDLINE | ID: mdl-33355344

ABSTRACT

In autophagy, cytoplasmic components of eukaryotic cells are transported to lysosomes or the vacuole for degradation. Autophagy is involved in plant tolerance to the photooxidative stress caused by ultraviolet B (UVB) radiation, but its roles in plant adaptation to UVB damage have not been fully elucidated. Here, we characterized organellar behavior in UVB-damaged Arabidopsis (Arabidopsis thaliana) leaves and observed the occurrence of autophagic elimination of dysfunctional mitochondria, a process termed mitophagy. Notably, Arabidopsis plants blocked in autophagy displayed increased leaf chlorosis after a 1-h UVB exposure compared to wild-type plants. We visualized autophagosomes by labeling with a fluorescent protein-tagged autophagosome marker, AUTOPHAGY8 (ATG8), and found that a 1-h UVB treatment led to increased formation of autophagosomes and the active transport of mitochondria into the central vacuole. In atg mutant plants, the mitochondrial population increased in UVB-damaged leaves due to the cytoplasmic accumulation of fragmented, depolarized mitochondria. Furthermore, we observed that autophagy was involved in the removal of depolarized mitochondria when mitochondrial function was disrupted by mutation of the FRIENDLY gene, which is required for proper mitochondrial distribution. Therefore, autophagy of mitochondria functions in response to mitochondrion-specific dysfunction as well as UVB damage. Together, these results indicate that autophagy is centrally involved in mitochondrial quality control in Arabidopsis leaves.


Subject(s)
Autophagy/physiology , Mitochondria/physiology , Plant Leaves/physiology , Arabidopsis/physiology , Mitochondria/radiation effects , Mitophagy/physiology , Plant Leaves/cytology , Plant Leaves/radiation effects , Ultraviolet Rays/adverse effects
13.
Chem Commun (Camb) ; 56(94): 14917-14919, 2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33196066

ABSTRACT

Strigolactones (SLs) are plant hormones that suppress shoot branching through perception by their receptor protein DWARF 14 (D14). The artificial regulation of SL signaling has been considered a potent agricultural technique because plant architecture is strongly related to crop yield. In this communication, we describe the development of a small-molecule D14 inhibitor that functions at sub-micromolar levels. This potent inhibitor may be a lead compound for a first-in-class plant growth regulator.


Subject(s)
Heterocyclic Compounds, 3-Ring/metabolism , Lactones/metabolism , Receptors, Cell Surface/antagonists & inhibitors , Plant Growth Regulators/metabolism , Signal Transduction
14.
Nucleic Acids Res ; 48(18): e108, 2020 10 09.
Article in English | MEDLINE | ID: mdl-32941625

ABSTRACT

The auxin-inducible degron (AID) system enables rapid depletion of target proteins within the cell by applying the natural auxin IAA. The AID system is useful for investigating the physiological functions of essential proteins; however, this system generally requires high dose of auxin to achieve effective depletion in vertebrate cells. Here, we describe a super-sensitive AID system that incorporates the synthetic auxin derivative 5-Ad-IAA and its high-affinity-binding partner OsTIR1F74A. The super-sensitive AID system enabled more than a 1000-fold reduction of the AID inducer concentrations in chicken DT40 cells. To apply this system to various mammalian cell lines including cancer cells containing multiple sets of chromosomes, we utilized a single-step method where CRISPR/Cas9-based gene knockout is combined with insertion of a pAID plasmid. The single-step method coupled with the super-sensitive AID system enables us to easily and rapidly generate AID-based conditional knockout cells in a wide range of vertebrate cell lines. Our improved method that incorporates the super-sensitive AID system and the single-step method provides a powerful tool for elucidating the roles of essential genes.


Subject(s)
Gene Knockout Techniques/methods , Indoleacetic Acids/chemistry , Plant Proteins/genetics , Proteolysis , Animals , CRISPR-Cas Systems , Cell Line , Chickens , Humans , Oryza/metabolism
15.
Plant Physiol ; 183(4): 1531-1544, 2020 08.
Article in English | MEDLINE | ID: mdl-32554506

ABSTRACT

Autophagy and the ubiquitin-proteasome system are the major degradation processes for intracellular components in eukaryotes. Although ubiquitination acts as a signal inducing organelle-targeting autophagy, the interaction between ubiquitination and autophagy in chloroplast turnover has not been addressed. In this study, we found that two chloroplast-associated E3 enzymes, SUPPRESSOR OF PPI1 LOCUS1 and PLANT U-BOX4 (PUB4), are not necessary for the induction of either piecemeal autophagy of chloroplast stroma or chlorophagy of whole damaged chloroplasts in Arabidopsis (Arabidopsis thaliana). Double mutations of an autophagy gene and PUB4 caused synergistic phenotypes relative to single mutations. The double mutants developed accelerated leaf chlorosis linked to the overaccumulation of reactive oxygen species during senescence and had reduced seed production. Biochemical detection of ubiquitinated proteins indicated that both autophagy and PUB4-associated ubiquitination contributed to protein degradation in the senescing leaves. Furthermore, the double mutants had enhanced susceptibility to carbon or nitrogen starvation relative to single mutants. Together, these results indicate that autophagy and chloroplast-associated E3s cooperate for protein turnover, management of reactive oxygen species accumulation, and adaptation to starvation.


Subject(s)
Arabidopsis/metabolism , Arabidopsis/physiology , Autophagy/physiology , Plant Leaves/metabolism , Plant Leaves/physiology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Autophagy/genetics , Chloroplasts/genetics , Chloroplasts/metabolism , Oxidative Stress/genetics , Oxidative Stress/physiology , Plant Leaves/genetics , Reactive Oxygen Species/metabolism , Ubiquitin/metabolism , Ubiquitination/genetics , Ubiquitination/physiology
16.
Nat Chem Biol ; 16(6): 676-685, 2020 06.
Article in English | MEDLINE | ID: mdl-32231341

ABSTRACT

CRY1 and CRY2 are essential components of the circadian clock controlling daily physiological rhythms. Accumulating evidences indicate distinct roles of these highly homologous proteins, in addition to redundant functions. Therefore, the development of isoform-selective compounds represents an effective approach towards understanding the similarities and differences of CRY1 and CRY2 by controlling each isoform individually. We conducted phenotypic screenings of circadian clock modulators, and identified KL101 and TH301 that selectively stabilize CRY1 and CRY2, respectively. Crystal structures of CRY-compound complexes revealed conservation of compound-binding sites between CRY1 and CRY2. We further discovered a unique mechanism underlying compound selectivity in which the disordered C-terminal region outside the pocket was required for the differential effects of KL101 and TH301 against CRY isoforms. By using these compounds, we found a new role of CRY1 and CRY2 as enhancers of brown adipocyte differentiation, providing the basis of CRY-mediated regulation of energy expenditure.


Subject(s)
Cryptochromes/chemistry , Protein Isoforms/chemistry , Animals , Binding Sites , Circadian Clocks , Cryptochromes/genetics , Fibroblasts/metabolism , HEK293 Cells , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Male , Mice, Knockout , Models, Molecular , Protein Binding , Protein Conformation , Protein Isoforms/genetics , Thermodynamics
17.
Sci Adv ; 5(1): eaau9060, 2019 01.
Article in English | MEDLINE | ID: mdl-30746467

ABSTRACT

Compounds targeting the circadian clock have been identified as potential treatments for clock-related diseases, including cancer. Our cell-based phenotypic screen revealed uncharacterized clock-modulating compounds. Through affinity-based target deconvolution, we identified GO289, which strongly lengthened circadian period, as a potent and selective inhibitor of CK2. Phosphoproteomics identified multiple phosphorylation sites inhibited by GO289 on clock proteins, including PER2 S693. Furthermore, GO289 exhibited cell type-dependent inhibition of cancer cell growth that correlated with cellular clock function. The x-ray crystal structure of the CK2α-GO289 complex revealed critical interactions between GO289 and CK2-specific residues and no direct interaction of GO289 with the hinge region that is highly conserved among kinases. The discovery of GO289 provides a direct link between the circadian clock and cancer regulation and reveals unique design principles underlying kinase selectivity.


Subject(s)
Carcinoma, Renal Cell/metabolism , Cell Proliferation/drug effects , Circadian Clocks/drug effects , Circadian Rhythm/drug effects , Drug Screening Assays, Antitumor/methods , Kidney Neoplasms/metabolism , Animals , CLOCK Proteins/metabolism , Carcinoma, Renal Cell/pathology , Casein Kinase II/antagonists & inhibitors , Cell Line, Tumor , Crystallography, X-Ray , HEK293 Cells , Humans , Kidney Neoplasms/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phosphorylation/drug effects
18.
Curr Opin Plant Biol ; 47: 32-37, 2019 02.
Article in English | MEDLINE | ID: mdl-30248557

ABSTRACT

Synthetic molecules can be powerful tools to overcome the limitations of the biological approaches. Especially redundancy, lethality, and intractability of the target genes, which often hamper the progress of plant science, could be bypassed by elaborately designed small molecules. In this review, we discuss how synthetic chemistry can contribute to increasing our understanding of plant hormone signaling. Specific focus will be on the visualization and hijacking of hormone signaling with novel synthetic chemicals, with emphasis on perception of ABA, strigolactones, and auxins.


Subject(s)
Chemistry , Plant Growth Regulators/metabolism , Signal Transduction , Fluorescent Dyes/metabolism , High-Throughput Screening Assays , Receptors, Cell Surface/metabolism
19.
Org Lett ; 20(18): 5684-5687, 2018 09 21.
Article in English | MEDLINE | ID: mdl-30179492

ABSTRACT

A series of new AHX derivatives were synthesized by Pd-catalyzed C-H arylation. Their rice-growth-promoting activity was evaluated in vivo. Among the synthesized compounds, C8 phenyl-substituted AHX showed remarkable growth-promoting activity on rice. The present study shows the power and significant opportunity of C-H functionalization chemistry to rapidly transform biologically active natural products into more active compounds.

20.
New Phytol ; 220(2): 417-424, 2018 10.
Article in English | MEDLINE | ID: mdl-30088268

ABSTRACT

Contents Summary 417 I. Introduction 417 II. Auxin analogs 1: Plant growth regulators 418 III. Auxin analogs 2: Molecular genetics and chemical biology 418 IV. Auxin analogs 3: Structure-guided chemical design 418 V. Auxin analogs 4: Synthetic orthogonal auxin-TIR1 pair 420 VI. Conclusions and future perspectives 422 Acknowledgements 422 References 423 SUMMARY: Plant biologists have been fascinated by auxin - a small chemical hormone so simple in structure yet so powerful - which regulates virtually every aspect of plant growth, development and behavior. Synthetic chemistry has played a major role in unraveling the physiological effects of auxin and the application of synthetic analogs has had a dramatic effect on tissue culture, horticulture and the agriculture of economically relevant plant species. Chemical genetics of the model plant, Arabidopsis thaliana, has helped to elucidate the nuclear auxin signaling pathway mediated by the receptor, TIR1, and opened the door to structure-guided, rational designs of auxin agonists and antagonists. Further improvement and tuning of such analogs has been achieved through derivatization and screening. Finally, by harnessing synthetic chemistry and receptor engineering, an orthogonal auxin-TIR1 pair has been created and developed, enabling spatiotemporal control of auxin perception and response. This synergism of chemistry, biology and engineering sparks new ideas and directions to delineate, uncover and manipulate auxin signaling.


Subject(s)
Chemistry Techniques, Synthetic/methods , Indoleacetic Acids/metabolism , Signal Transduction , Indoleacetic Acids/chemistry , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...