Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Plant ; 176(3): e14396, 2024.
Article in English | MEDLINE | ID: mdl-38887929

ABSTRACT

Phosphorus (P) is a crucial macronutrient required for normal plant growth. Its effective uptake from the soil is a trait of agronomic importance. Natural variation in maize (339 accessions) root traits, namely root length and number of primary, seminal, and crown roots, root and shoot phosphate (Pi) contents, and root-to-shoot Pi translocation (root: shoot Pi) under normal (control, 40 ppm) and low phosphate (LP, 1 ppm) conditions, were used for genome-wide association studies (GWAS). The Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK) model of GWAS provided 23 single nucleotide polymorphisms (SNPs) and 12 relevant candidate genes putatively linked with root Pi, root: shoot Pi, and crown root number (CRN) under LP. The DNA-protein interaction analysis of Zm00001d002842, Zm00001d002837, Zm00001d002843 for root Pi, and Zm00001d044312, Zm00001d045550, Zm00001d025915, Zm00001d044313, Zm00001d051842 for root: shoot Pi, and Zm00001d031561, Zm00001d001803, and Zm00001d001804 for CRN showed the presence of potential binding sites of key transcription factors like MYB62, bZIP11, ARF4, ARF7, ARF10 and ARF16 known for induction/suppression of phosphate starvation response (PHR). The in-silico RNA-seq analysis revealed up or down-regulation of candidate genes along with key transcription factors of PHR, while Uniprot analysis provided genetic relatedness. Candidate genes that may play a role in P uptake and root-to-shoot Pi translocation under LP are proposed using common PHR signaling components like MYB62, ARF4, ARF7, ARF10, ARF16, and bZIP11 to induce changes in root growth in maize. Candidate genes may be used to improve low P tolerance in maize using the CRISPR strategy.


Subject(s)
Genome-Wide Association Study , Phosphates , Plant Roots , Polymorphism, Single Nucleotide , Zea mays , Zea mays/genetics , Zea mays/growth & development , Zea mays/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Polymorphism, Single Nucleotide/genetics , Phosphates/metabolism , Phosphates/deficiency , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Linkage Disequilibrium/genetics
2.
Plants (Basel) ; 13(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38337989

ABSTRACT

Phosphate (P) is a crucial macronutrient for normal plant growth and development. The P availability in soils is a limitation factor, and understanding genetic factors playing roles in plant adaptation for improving P uptake is of great biological importance. Genome-wide association studies (GWAS) have become indispensable tools in unraveling the genetic basis of complex traits in various plant species. In this study, a comprehensive GWAS was conducted on diverse tomato (Solanum lycopersicum L.) accessions grown under normal and low P conditions for two weeks. Plant traits such as shoot height, primary root length, plant biomass, shoot inorganic content (SiP), and root inorganic content (RiP) were measured. Among several models of GWAS tested, the Bayesian-information and linkage disequilibrium iteratively nested keyway (BLINK) models were used for the identification of single nucleotide polymorphisms (SNPs). Among all the traits analyzed, significantly associated SNPs were recorded for PB, i.e., 1 SNP (SSL4.0CH10_49261145) under control P, SiP, i.e., 1 SNP (SSL4.0CH08_58433186) under control P and 1 SNP (SSL4.0CH08_51271168) under low P and RiP i.e., 2 SNPs (SSL4.0CH04_37267952 and SSL4.0CH09_4609062) under control P and 1 SNP (SSL4.0CH09_3930922) under low P condition. The identified SNPs served as genetic markers pinpointing regions of the tomato genome linked to P-responsive traits. The novel candidate genes associated with the identified SNPs were further analyzed for their protein-protein interactions using STRING. The study provided novel candidate genes, viz. Solyc10g050370 for PB under control, Solyc08g062490, and Solyc08g062500 for SiP and Solyc09g010450, Solyc09g010460, Solyc09g010690, and Solyc09g010710 for RiP under low P condition. These findings offer a glimpse into the genetic diversity of tomato accessions' responses to P uptake, highlighting the potential for tailored breeding programs to develop P-efficient tomato varieties that could adapt to varying soil conditions, making them crucial for sustainable agriculture and addressing global challenges, such as soil depletion and food security.

3.
Physiol Mol Biol Plants ; 28(6): 1311-1321, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35910442

ABSTRACT

The phenotyping of plant roots is a challenging task and poses a major lacuna in plant root research. Roots rhizospheric zone is affected by several environmental cues among which salinity, drought, heavy metal and soil pH are key players. Among biological factors, fungal, nematode and bacterial interactions with roots are vital for improving nutrient uptake efficiency in plants. The subterranean nature of a plant root and the limited number of approaches for root phenotyping offers a great challenge to the plant breeders to select a desirable root trait under different stress conditions. Identification of key root traits can provide a basic understanding for generating crop plants with enhanced ability to withstand various biotic or abiotic stresses. For instance, crops with improved soil exploration potential, phosphate uptake efficiency, water use efficiency and others. Laboratory methods such as hydroponics, rhizotron, rhizoslide and luminescence observatory for roots do not provide precise and desired root quantification attributes. Though 3D imaging by X-ray computed tomography (X-ray-CT) and magnetic resonance imaging techniques are complex, however, it provides the most applicable and practically relevant data for quantifying root system architecture traits. This review outlines the current developments in root studies including recent approaches viz. X-ray-CT, MRI, thermal infrared imaging and minirhizotron. Although root phenotyping is a laborious procedure, it offers multiple advantages by removing discrepancies and providing the actual practical significance of plant roots for breeding programs.

4.
Chemosphere ; 307(Pt 3): 135958, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35952796

ABSTRACT

Paclobutrazol (PBZ) role in drought management of maize is least understood. In maize, root traits are linked with surface water management. Over three years, early and terminal deficit irrigation (EDI and TDI) with or without PBZ were imposed on DKC-9144 and PG-2475 maize varieties. Several allometric parameters viz. stem height, stem diameter, leaf area and root traits along with physiological processes were measured. Implication of these parameters in the management of soil surface irrigation in terms of water use efficiency (WUE) was demonstrated in maize. Increased number of lateral roots and root number density in DKC-9144 provided more surface area for water absorption for better management of EDI. Root growth rates showed a similar pattern with root length, root surface areas, and root numbers in EDI. Elevated expressions of ZmRTCL, ZmRTCS and ZmARF34 in EDI and EDI plus PBZ were associated with seminal roots and root laterals initiation. Under TDI alone or in combination with PBZ, root lengths (BRL, CRL, SRL) and root surface areas varied in DKC-9144 and PG-2475 over control. Furthermore, correlation analysis showed that decrease in WUE under TDI was significantly associated with a reduction in stem thickness and leaf surface area. For WUE_N in TDI and PBZ plus TDI, structural equation modelling proposed, brace root surface area (BRSA_N) as a positive contributor, while a negative contributor was seminal root surface area (SRSA_N). Present study explained the importance of specific root traits and their association with other allometric parameters for improving WUE in DKC-9144 variety of maize and the crop in general.


Subject(s)
Water , Zea mays , Plant Roots/metabolism , Soil , Triazoles/metabolism , Water/metabolism , Zea mays/metabolism
5.
Physiol Mol Biol Plants ; 28(2): 363-381, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35400882

ABSTRACT

In the present study, green synthesis of zinc oxide nanoparticles (ZnO NP) using Eucalyptus lanceolatus (leaf litter) extract was explored after characterization with UV spectrophotometery, Fourier Transform Infrared analysis, X-ray diffraction and TEM studies. ZnO NPs stability was ensured with - 32.1 mV zeta potential, while TEM showed ZnO NP as hexagonal structure (100 nm). In vitro antimicrobial activity showed potential of ZnO NP against pathogens causing diseases in maize plants. Both in vitro and in vivo studies of ZnO NP and ZnSO4 (200 ppm and 400 ppm) over a two year period (2019, 2020) were conducted on Zea mays L. var. PG2458. ZnO NP seed priming improved seed vigor index, germination percentage, shoot and root length and fresh biomass. Foliar application improved stem diameter and leaf surface area. Physiological status was relatively better, while reproductive attributes got altered to guide resource allocation for better cob growth and biomass with ZnO NP. Leaf, cob, grain and total Zn was maximum for 200 ppm ZnO NP. Translocation of Zn from leaf to cob and cob to grain was faster for ZnO NP compared to ZnSO4. Higher concentration (400 ppm) of ZnO NPs and ZnSO4 proved phytotoxic for plant growth attributes. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01136-0.

6.
Sci Rep ; 11(1): 3369, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33564007

ABSTRACT

Bryophytes are potent metal absorbers, thriving well on heavy metal (HM)-polluted soils. Mechanisms controlling uptake, compartmentalization and impacts of HMs on bryophytes life cycle are largely unknown. The current study is an effort to decipher mechanisms of nickel (Ni) excess-induced effects on the phenological events of two bryophytes, Asterella wallichiana and Plagiochasma apendiculatum growing in natural habitats. Observations revealed Ni-excess induced negative impacts on abundance, frequency of occurrence of reproductive organs, population viability and morphological traits, spore viability and physiological attributes of both the liverworts. Results led us conclude that P. appendiculatum survived better with the lowest impact on its life cycle events than A. wallichiana under Ni excess in natural habitats. Our findings collectively provide insights into the previously unknown mechanisms of Ni-induced responses in liverworts with respect to phenological attributes, as well as demonstrate the potential of P. appendiculatum to survive better in Ni excess habitats.

SELECTION OF CITATIONS
SEARCH DETAIL
...