Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
J Dairy Sci ; 106(6): 4072-4091, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37028960

ABSTRACT

This experiment investigated the variation in enteric methane production and associated gas exchange parameters, nutrient digestibility, rumen fermentation, and rumen microbiome when a range of silages based on different forage types (grass or clover), and different species within the 2 types, were fed as the sole feed to heifers. Three grass species (perennial ryegrass, festulolium, and tall fescue) and 2 clover species (red clover and white clover) were included. Perennial ryegrass was harvested at 2 maturity stages in the primary growth, white clover was harvested once in the primary growth, and 4 cuts of festulolium and tall fescue and 3 cuts of red clover were harvested during the growing season, giving 14 different silage batches in total. Sixteen Holstein heifers 16 to 21 mo old and 2 to 5 mo in pregnancy were fed the silages ad libitum as the sole feed in an incomplete crossover design. Each silage was fed to 4 heifers, except for the 2 perennial ryegrass silages, which were fed to 8 heifers; in total 64 observations. The CH4 production was measured for 3 d in respiration chambers. Heifers fed clover silages had higher dry matter intake (DMI) compared with heifers fed grass silages, and heifers fed tall fescue silages had the numerically the lowest DMI. Compared with grass silages, feeding clover silages led to higher crude protein digestibility but lower neutral detergent fiber (NDF) digestibility. Rumen pH was higher in heifers fed clover silages compared with those fed grass silages. Based on composition analysis, the rumen microbiota of the heifers clustered clearly according to forage type and species. More specifically, 7 of the 34 dominating rumen bacterial genus-level groups showed higher relative abundances for the clover silages, whereas 7 genus-level groups showed higher abundances for the grass silages. Methane yield was higher for heifers fed grass silages than for those fed clover silages when methane production was related to dry matter and digestible organic matter intake, whereas the opposite was seen when related to NDF digestion. The gross energy lost as methane (CH4 conversion factor, %) reduced from 7.5% to 6.7%, equivalent to an 11% reduction. The present study gives the outlines for choosing the optimal forage type and forage species with respect to nutrient digestibility and enteric methane emission in ruminants.


Subject(s)
Festuca , Lolium , Trifolium , Pregnancy , Cattle , Animals , Female , Poaceae/metabolism , Silage/analysis , Rumen/metabolism , Medicago , Trifolium/metabolism , Diet/veterinary , Nutrients/analysis , Digestion , Methane/metabolism , Lactation
2.
J Dairy Sci ; 106(4): 2230-2246, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36710181

ABSTRACT

Corrected milk equations were developed in attempts to bring milk weights to a standardized basis for comparison by expressing the weight and composition of milk as corrected to the energy content of milk of a specific composition. Expressed as milk weights familiar on farm and in commerce, this approach integrates energy contributions of the dissimilar components to make the mass units more comparable. Such values are applied in evaluating feed efficiency, lactation performance, and global milk production, as functional units for lifecycle assessments, and in translation of research results. Corrected milk equations are derived from equations relating milk gross energy to milk composition. First, a milk energy equation is used to calculate the energy value of the milk composition to correct to (e.g., 0.695 Mcal/kg for milk with 3.5% fat, 3.05% true protein, and 4.85% lactose). That energy value is divided into the energy equation to give the corrected milk equation. Confusion has arisen, as different equations purport to correct to the same milk composition; their differences are based on uses of different energy equations or divisors. Accuracy of corrected milk equations depends on the accuracy of the energy equations used to create them. Energy equations have evolved over time as different milk component analyses have become more available. Inclusion of multiple milk components more accurately predicts milk energy content than does fat content alone. Omission of components from an equation requires the assumption that their content in milk is constant or highly correlated with an included component. Neither of these assumptions is true. Milk energy equations evaluated on a small data set of measured milk values have demonstrated that equations that incorporate protein, fat, and lactose contents multiplied by the gross energy of each component more closely predict milk energy than equations containing fewer components or regression-derived equations. This provides a tentative recommendation for using energy equations that include the 3 main milk components and their gross energy multipliers for predicting milk energy and deriving corrected milk equations. Accuracy of energy equations is affected by the accuracy of gross energy values of individual components and variability of milk composition. Lactose has consistent reported gross energy values. In contrast, gross energy of milk fat and protein vary as their compositional profiles change. Future refinements could assess accuracy of milk fat and protein gross energy and whether that appreciably improves milk energy predictions. Fat gross energy has potential to be calculated using the milk fatty acid profile, although the influence on gross energy may be small. For research, direct reporting of milk energy values, rather than corrected milk, provides the most explicit, least manipulated form of the data. However, provision of corrected milk values in addition to information on components can serve to translate the energy information to a form familiar to and widely used in the field. When reporting corrected milk data, the corrected milk equation, citation for the energy equation used, and composition and energy contents of the corrected milk must be described to make clear what the values represent.


Subject(s)
Lactation , Milk , Female , Animals , Milk/metabolism , Lactation/metabolism , Lactose/metabolism , Diet/veterinary , Energy Metabolism , Proteins/metabolism
3.
J Dairy Sci ; 105(5): 3939-3953, 2022 May.
Article in English | MEDLINE | ID: mdl-35346471

ABSTRACT

Little data is presently available on our ability to predict the combined effect of modifying diets with feeds rich in sugars or starch (ST) and rumen-degradable protein (RDP) on the performance of high-producing dairy cows. The objective of this study was to compare responses of 59 lactating Holstein cows to substitution of cane molasses (Mol) for dry corn grain (CG) at 3 levels of Mol and 2 levels of RDP (+RDP or -RDP) in a randomized complete block design with a 3 × 2 factorial arrangement of treatments. Also, lactation responses predicted by 2 nutritional models were compared with observed responses, with Mol composition entered so that nonnutritive materials in Mol were not counted as potentially digestible carbohydrate. We hypothesized that dry matter (DM) intake and milk fat percentage responses would increase with increasing Mol and would potentially be greater with +RDP. For evaluation of the nutritional models, we adopted the null hypothesis that observed and predicted lactation performance would not differ. Cows were individually fed a common diet during a 2-wk covariate period followed by 8 wk on experimental diets. Diets were formulated to be isonitrogenous and provide similar amounts of ST and water-soluble carbohydrates. Experimental diets contained, on a DM basis, 35% corn silage, 20% alfalfa silage, and 16.6% crude protein. The 0, 5.25, and 10.5% Mol diets respectively contained 19.0, 14.5, and 10.0% CG; 28, 25, and 22% ST; and 5.5, 8.5, and 11.5% water-soluble carbohydrates. At 10 wk on study, cows averaged 45.5 kg of energy-corrected milk (ECM). The DM intake (DMI), and yields of milk, milk protein, and ECM, and milk N/intake N declined linearly with increasing Mol. Differences among diets were not detected for milk fat yield and ECM/DMI. No RDP or interaction effects were detected for these measures. That milk production efficiency did not differ across diets suggests that DMI was a primary driver of performance. The similar ECM/DMI and maintenance of milk fat yield would not have been predicted based on Mol and CG composition but may relate to differences in fermentation rates and products. As explanation for these results, we hypothesize that more rapid ruminal evolution of volatile fatty acids post-ingestion with Mol compared with CG may have provided masses of acetate and butyrate in excess of existing energy and synthetic needs that were shunted to milk fat production, and of propionate that depressed intake. The 2001 Dairy National Research Council model and the Cornell Net Carbohydrate and Protein System 6.55 in Nutritional Dynamic System Professional (2021) estimates of metabolizable protein-allowable ECM underestimated actual ECM for +RDP diets by 4.5 and 2.3 kg, respectively, and came close or overestimated for -RDP diets by 0.25 and 5.0 kg, respectively. Prediction discrepancies suggest issues with valuation of dietary protein based on degradability. Improved understanding of factors mediating these results would likely enhance our ability to predict animal responses.


Subject(s)
Lactation , Rumen , Animals , Canes , Cattle , Diet/veterinary , Digestion , Female , Lactation/physiology , Molasses , Rumen/metabolism , Silage/analysis , Starch/metabolism , Water/metabolism , Zea mays/metabolism
4.
J Dairy Sci ; 105(5): 3954-3968, 2022 May.
Article in English | MEDLINE | ID: mdl-35346474

ABSTRACT

Our objective was to evaluate cow N metabolism and ruminal measures with diets containing 3 different levels of molasses or finely ground dry corn grain with 2 levels of ruminally degradable protein (RDP). Twelve lactating, ruminally cannulated Holstein cows (parity 2.25 ± 0.62; 185 ± 56 DIM; 41.3 ± 6.3 kg of milk initially) were individually fed in an experiment designed as a split-plot, replicated 3 × 3 Latin square, where each period lasted 28 d. Six diets were formulated according to a 2 × 3 factorial arrangement of treatments, where 2 levels of RDP (+RDP and -RDP) were fed throughout the experiment as the whole plot, and 3 levels of molasses (0, 5.25, or 10.50% of dry matter replacing finely ground dry corn grain) were fed in sequences of the Latin squares. Dry matter intake did not differ by diet, although ash intake increased linearly with increasing molasses. Ruminal pH, organic acid concentration, and ammonia concentration were not affected by diet. Molar percentages of ruminal acetate decreased and butyrate increased linearly with increasing levels of molasses. Ruminal free amino acid concentration was greater for +RDP, whereas branched-chain volatile fatty acids declined linearly with increasing molasses. Rumen content mass, ruminal liquid, and ruminal acetate pool size was greater for -RDP, although ruminal lactate pool size tended to be greater with +RDP. Increased ruminal lactate when increasing molasses with high RDP should be explored further, to optimize microbial efficiency and rumen health. Total-tract apparent dry matter digestibility based on spot sampling was not affected by diet; however, ash digestibility increased linearly with increasing levels of molasses. Calculated urine output was greater for cows fed diets with increasing levels of molasses and for cows fed +RDP. Grams of N distributed to excretion pools were not different across diets, although, as molasses increased, a lower proportion of N intake was excreted in urine. Overall, the results from this experiment showed that dairy cows used dietary carbohydrates differently during ruminal fermentation, with increasing molasses resulting in increased butyrate molar proportions at the expense of acetate. Additionally, RDP tended to modify the effects of carbohydrate fermentation, resulting in a tendency for increasing lactate molar pool size only in diets with greater RDP, although this did not ultimately affect ruminal pH.


Subject(s)
Molasses , Rumen , Animals , Butyrates/metabolism , Cattle , Diet/veterinary , Digestion , Fatty Acids/metabolism , Female , Fermentation , Lactates/analysis , Lactation , Milk/chemistry , Nitrogen/metabolism , Rumen/metabolism , Zea mays/metabolism
5.
J Dairy Sci ; 104(8): 8857-8869, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33985782

ABSTRACT

The objective of this work was to characterize rumen volatile fatty acid (VFA) concentrations, rumen epithelial gene expression, and blood metabolite responses to diets with different starch and fiber sources. Six ruminally cannulated yearling Holstein heifers (body weight = 330 ± 11.3 kg) were arranged in a partially replicated Latin square experiment with 4 treatments consisting of different starch [barley (BAR) or corn (CRN)] and fiber [timothy hay (TH) or beet pulp (BP)] sources. Treatments were arranged as a 2 × 2 factorial. Beet pulp and TH were used to create relative changes in apparent ruminal fiber disappearance, whereas CRN and BAR were used to create relative changes in apparent ruminal starch disappearance. Each period consisted of 3 d of diet adaptation and 15 d of dietary treatment. In situ disappearance of fiber and starch were estimated from bags incubated in the rumen from d 10 to 14. From d 15 to 17, rumen fluid was collected every hour from 0500 to 2300 h. Rumen fluid samples were pooled by animal/period and analyzed for pH and VFA concentrations. On d 18, 60 to 80 papillae were biopsied from the epithelium and preserved for gene expression analysis. On d 18, one blood sample per heifer was collected from the coccygeal vessel. In situ ruminal starch disappearance rate (7.30 to 8.72%/h for BAR vs. 7.61 to 10.5%/h for CRN) and the extent of fiber disappearance (22.2 to 33.4% of DM for TH vs. 34.4 to 38.7% of DM for BP) were affected by starch and fiber source, respectively. Analysis of VFA molar proportions showed a shift from propionate to acetate, and valerate to isovalerate on TH diets compared with BP. Corn diets favored propionate over butyrate in comparison to BAR diets. Corn diets also had higher molar proportions of valerate. Expression of 1 gene (SLC9A3) were increased in BP diets and 2 genes (BDH1 and SLC16A4) tended to be increased in TH diets. Plasma acetate demonstrated a tendency for a starch by fiber interaction with BAR-BP diets having the highest plasma acetate, but other metabolites measured were not significant. These results suggest that TH has the greatest effect on shifts in VFA molar proportions and epithelial transporters, but does not demonstrate shifts in blood metabolite concentrations.


Subject(s)
Rumen , Starch , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Digestion , Fatty Acids, Volatile/metabolism , Female , Fermentation , Gene Expression , Hydrogen-Ion Concentration , Molar/metabolism , Rumen/metabolism , Starch/metabolism , Zea mays/metabolism
6.
J Dairy Sci ; 103(11): 10867-10881, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33076178

ABSTRACT

Questions regarding the balance between the contribution to human nutrition and the environmental impact of livestock food products rarely evaluate specific species or how to accomplish the recommended depopulation. The objective of this study was to assess current contributions of the US dairy industry to the supply of nutrients and environmental impact, characterize potential impacts of alternative land use for land previously used for crops for dairy cattle, and evaluate the impacts of these approaches on US dairy herd depopulation. We modeled 3 scenarios to reflect different sets of assumptions for how and why to remove dairy cattle from the US food production system coupled with 4 land-use strategies for the potential newly available land previously cropped for dairy feed. Scenarios also differed in assumptions of how to repurpose land previously used to grow grain for dairy cows. The current system provides sufficient fluid milk to meet the annual energy, protein, and calcium requirements of 71.2, 169, and 254 million people, respectively. Vitamins supplied by dairy products also make up a high proportion of total domestic supplies from foods, with dairy providing 39% of the vitamin A, 54% of the vitamin D, 47% of the riboflavin, 57% of the vitamin B12, and 29% of the choline available for human consumption in the United States. Retiring (maintaining animals without milk harvesting) dairy cattle under their current management resulted in no change in absolute greenhouse gas emissions (GHGE) relative to the current production system. Both depopulation and retirement to pasture resulted in modest reductions (6.8-12.0%) in GHGE relative to the current agricultural system. Most dairy cow removal scenarios reduced availability of essential micronutrients such as α-linolenic acid, Ca, and vitamins A, D, B12, and choline. Those removal scenarios that did not reduce micronutrient availability also did not improve GHGE relative to the current production system. These results suggest that removal of dairy cattle to reduce GHGE without reducing the supply of the most limiting nutrients to the population would be difficult.


Subject(s)
Dairy Products/analysis , Dairying/methods , Environment , Nutritional Status , Animals , Cattle , Crops, Agricultural , Female , Greenhouse Gases , Humans , Micronutrients , Milk , Models, Biological , United States
7.
J Dairy Sci ; 103(4): 3786-3803, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32113773

ABSTRACT

Millions of feed composition records generated annually by testing laboratories are valuable assets that can be used to benefit the animal nutrition community. However, it is challenging to manage, handle, and process feed composition data that originate from multiple sources, lack standardized feed names, and contain outliers. Efficient methods that consolidate and screen such data are needed to develop feed composition databases with accurate means and standard deviations (SD). Considering the interest of the animal science community in data management and the importance of feed composition tables for the animal industry, the objective was to develop a set of procedures to construct accurate feed composition tables from large data sets. A published statistical procedure, designed to screen feed composition data, was employed, modified, and programmed to operate using Python and SAS. The 2.76 million data received from 4 commercial feed testing laboratories were used to develop procedures and to construct tables summarizing feed composition. Briefly, feed names and nutrients across laboratories were standardized, and erroneous and duplicated records were removed. Histogram, univariate, and principal component analyses were used to identify and remove outliers having key nutrients outside of the mean ± 3.5 SD. Clustering procedures identified subgroups of feeds within a large data set. Aside from the clustering step that was programmed in Python to automatically execute in SAS, all steps were programmed and automatically conducted using Python followed by a manual evaluation of the resulting mean Pearson correlation matrices of clusters. The input data set contained 42, 94, 162, and 270 feeds from 4 laboratories and comprised 25 to 30 nutrients. The final database included 174 feeds and 1.48 million records. The developed procedures effectively classified by-products (e.g., distillers grains and solubles as low or high fat), forages (e.g., legume or grass-legume mixture by maturity), and oilseeds versus meal (e.g., soybeans as whole raw seeds vs. soybean meal expellers or solvent extracted) into distinct sub-populations. Results from these analyses suggest that the procedure can provide a robust tool to construct and update large feed data sets. This approach can also be used by commercial laboratories, feed manufacturers, animal producers, and other professionals to process feed composition data sets and update feed libraries.


Subject(s)
Animal Feed/analysis , Diet/veterinary , Livestock , Animal Feed/classification , Animals , Cluster Analysis , Databases, Factual , Dietary Carbohydrates/analysis , Dietary Carbohydrates/classification , Dietary Fats/analysis , Dietary Fats/classification , Dietary Fiber/analysis , Dietary Fiber/classification , Dietary Proteins/analysis , Dietary Proteins/classification , Fabaceae/chemistry , Glutens/analysis , Glycine max/chemistry , Zea mays/chemistry
8.
J Dairy Sci ; 102(5): 4205-4208, 2019 May.
Article in English | MEDLINE | ID: mdl-30879814

ABSTRACT

Glycogen is an α-glucan produced by rumen microbes from various feed carbohydrates. It may be digested ruminally or intestinally to provide nutrients. The physicochemical and enzymatic hydrolysis characteristics of microbial glycogen have not been described in detail, but do influence its conversion to absorbable nutrients in vivo, its nutritional comparability with plant starch sources, and its accurate analysis in vitro. The objectives of this study were to determine presence or absence of a gelatinization response and to describe enzymatic digestion characteristics of glycogen granules isolated from ruminal protozoa obtained from lactating dairy cows. Protozoal glycogen granules were determined to be 98.3% α-glucan. Granules displayed gelatinization, the breaking of hydrogen bonds between molecules or branches, at 65°C compared with purified wheat and corn starches, which initiated gelatinization at 50 and 65°C, respectively. Digestion of ungelatinized samples with amyloglucosidase for 2 h at 39°C showed approximately 3-fold greater hydrolysis to glucose for protozoal glycogen (25.2% of dry matter; DM) than for wheat (9.9% of DM) or corn (8.2% of DM) starches. Based on enzymatic digestion results, protozoal glycogen may be more readily digested than intact corn or wheat starches and should be gelatinized or the hydrogen bonds otherwise disrupted to allow more complete recovery in enzymatic analysis.


Subject(s)
Cattle/metabolism , Ciliophora/enzymology , Glycogen/metabolism , Rumen/metabolism , Rumination, Digestive , Animals , Female , Hydrolysis , Lactation , Rumen/parasitology , Starch/metabolism , Triticum , Zea mays
9.
J Dairy Sci ; 102(3): 2283-2297, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30660422

ABSTRACT

Postpartum dietary supplementation of gluconeogenic precursors may improve the plasma metabolite profile of dairy cows, reducing metabolic disorders and improving lactation performance. The objective of this trial was to examine the effects of supplementation with fermented ammoniated condensed whey (FACW) postpartum on lactation performance and on profile of plasma metabolites and hormones in transition dairy cows. Individually fed multiparous Holstein cows were blocked by calving date and randomly assigned to control (2.9% dry matter of diet as soybean meal; n = 20) or FACW (2.9% dry matter of diet as liquid GlucoBoost, Fermented Nutrition, Luxemburg, WI; n = 19) dietary treatments. Treatments were offered from 1 to 45 d in milk (DIM). Cows were milked twice a day. Dry matter intake and milk yield were recorded daily and averaged weekly. Individual milk samples from 2 consecutive milkings were obtained once a week for component analysis. Rumen fluid was collected (n = 3 cows/treatment) at 4 time points per day at 7 and 21 DIM. Blood samples were collected within 1 h before feeding time for metabolite analysis and hyperketonemia diagnosis. Supplementation of FACW improved feed efficiency relative to control; this effect may be partially explained by a marginally significant reduction in dry matter intake from wk 3 to 7 for FACW-supplemented cows with no detected FACW-driven changes in milk yield, milk protein yield, and milk energy output compared with control. Also, there was no evidence for differences in intake of net energy for lactation, efficiency of energy use, energy balance, or body weight or body condition score change from calving to 45 DIM between treatments. Supplementation of FACW shifted rumen measures toward greater molar proportions of propionate and butyrate, and lesser molar proportions of acetate and valerate. Cows supplemented with FACW had greater plasma glucose concentrations in the period from 3 to 7 DIM and greater plasma insulin concentrations compared with control. Plasma nonesterified fatty acid and ß-hydroxybutyrate concentrations were decreased in cows supplemented with FACW compared with control cows in the period from 3 to 7 DIM. These findings indicate that FACW may have improved the plasma metabolite profile immediately postpartum in dairy cows. Additionally, supplementation of FACW resulted in improved feed efficiency as accessed by measures of milk output relative to feed intake.


Subject(s)
Ammonium Compounds/metabolism , Cattle/physiology , Hormones/blood , Postpartum Period/physiology , Whey/metabolism , Animal Feed/analysis , Animals , Blood Chemical Analysis/veterinary , Diet/veterinary , Dietary Supplements/analysis , Female , Fermentation , Postpartum Period/drug effects , Whey/administration & dosage
10.
J Dairy Sci ; 100(4): 2739-2750, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28215887

ABSTRACT

The availability of rumen-degradable protein (RDP) changes the use of carbohydrates by ruminal microbes. However, the effects of RDP on the simultaneous use of carbohydrate and formation of microbial products are not well described, although such information is needed to understand the potential effect on nutrient supplies for ruminants. The objective of this in vitro study was to compare the effects of different levels of RDP (0.15, 0.31, 0.46 g of N/L) from tryptone (Tryp) or urea (Ur) on product formation from glucose in fermentations with mixed ruminal microbes. The study had a randomized complete block design with 2 replicated fermentation runs and destructive sampling at 0, 0.5, 1, 2, 3, 4, and 5 h. All rates given are first-order rate constants. Glucose disappearance rates and organic acid carbon (C) production rates tended to be or were greater for Tryp (0.64 and 0.58 h-1) than for Ur (0.51 and 0.22 h-1), respectively, but did not differ by N level. Maximum detected microbial N production was 67% greater for Tryp (2.35 mg) than for Ur (1.41 mg), which did not differ from the basal medium (1.47 mg). The pattern of glycogen accumulation over time tended to differ between Tryp and Ur: glycogen peaked and declined earlier in the fermentations with Tryp, resulting in less glycogen remaining at 5 h with Tryp (7.2 mg) than with Ur (11.0 mg). At the point of maximum microbial N accumulation, Tryp and Ur did not differ in the amount of glucose C used (29.4 and 28.9 mg), but did differ in the amounts of cell C (10.1 and 6.0 mg), organic acid C (17.4 and 13.8 mg), glycogen C (3.81 and 6.07 mg), and total microbial product C (35.4 and 29.6 mg) present. This resulted in increased efficiency for Tryp compared with Ur for cell C produced per used glucose C, corrected for glycogen C (0.40 and 0.27 mg/mg), and it resulted in a tendency for increased yield of cell C per organic acid C (0.59 and 0.44 mg/mg). Total product C exceeded used glucose C for Tryp, likely because of incorporation or fermentation of C from the provided AA. Overall, RDP source altered the temporal patterns of glucose use and the patterns and amounts of microbial product formation.


Subject(s)
Nitrogen/metabolism , Rumen/metabolism , Animals , Diet , Digestion , Fermentation , Glucose/metabolism , Lactation/drug effects
11.
Phys Chem Chem Phys ; 18(37): 25791-25795, 2016 Sep 21.
Article in English | MEDLINE | ID: mdl-27711596

ABSTRACT

Stacking interactions between cyclohexane and benzene were studied in crystal structures from the Cambridge Structural Database and by ab initio calculations. Calculated at the very accurate CCSD(T)/CBS level of theory, the cyclohexane-benzene interaction energy is -3.27 kcal mol-1, which is significantly stronger than the interaction in the benzene dimer (-2.84 kcal mol-1) indicating the importance of aliphatic-aromatic interactions.

12.
Dalton Trans ; 45(42): 16869-16877, 2016 Nov 14.
Article in English | MEDLINE | ID: mdl-27711775

ABSTRACT

The nickel(i) octaethylisobacteriochlorin anion ([OEiBCh-Ni(I)]-) is commonly used as a synthetic model of cofactor F430 from Methyl-Coenzyme M Reductase. In this regard, experimental studies show that [OEiBCh-Ni(I)]- can catalyze dehalogenation of aliphatic halides in DMF solution by a highly efficient SN2 reaction. To better understand this process, we constructed theoretical models of the dehalogenation of chloromethane by a simple nickel(i) isobacteriochlorin anion and compared its reactivity with that of similar Ni(I) complexes with other porphyrin-derived ligands: porphyrin, chlorin, bactreriochlorin, hexahydroporphyrin and octahydroporphyrin. Our calculations predict that all of the porphyrin derivative's model reactions proceed through low-spin complexes. Relative to the energy of the separate reactants the theoretical activation energies (free-energy barriers with solvation corrections) for the dehalogenation of chloromethane are similar for all of the porphyrin derivatives and range for the different functionals from 10-15 kcal mol-1 for B3LYP to 5-10 kcal mol-1 for M06-L and to 13-18 kcal mol-1 for ωB97X-D. The relative free energies of the products of the dehalogenation step, L-Ni-Me adducts, have a range from -5 to -40 kcal mol-1 for all functionals; generally becoming more negative with increasing saturation of the porphyrin ligand. Moreover, no significant differences in the theoretical chlorine kinetic isotope effect were discernable with change of porphyrin ligand.

13.
J Dairy Sci ; 99(8): 6342-6351, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27320677

ABSTRACT

Alkaline treatment of gramineous crop residues can convert an abundant, minimally utilized, poorly digestible straw into a moderately digestible feedstuff. Given the volatile nature of grain prices, substitution of treated stover for grain was investigated with dairy cows to provide insights on ruminal and digestibility effects of a feed option that makes use of alternative, available resources. The objective of this study was to evaluate changes in diet digestibility and ruminal effects when increasing levels of calcium oxide-treated corn stover (CaOSt) were substituted for corn grain in diets of lactating cows. Mature corn stover was treated with calcium oxide at a level of 50g∙kg(-1) dry matter (DM), brought up to a moisture content of 50% following bale grinding, and stored anaerobically at ambient temperatures for greater than 60d before the feeding experiment. Eight ruminally cannulated Holstein cows averaging 686kg of body weight and 35kg of milk∙d(-1) were enrolled in a replicated 4×4 Latin square, where CaOSt replaced corn grain on a DM basis in the ration at rates of 0, 40, 80, and 120g∙kg(-1) DM. All reported significant responses were linear. The DM intake declined by approximately 1kg per 4% increase in CaOSt inclusion. With increasing replacement of corn grain, dietary neutral detergent fiber (NDF) concentration increased. However, rumen NDF turnover, NDF digestibility, NDF passage rate, and digestion rate of potentially digestible NDF were unaffected by increasing CaOSt inclusion. Total-tract organic matter digestibility declined by 5 percentage units over the range of treatments, approximately 1.5 units per 4-percentage-unit substitution of CaOSt for grain. With increasing CaOSt, the molar proportions of butyrate and valerate declined, whereas the lowest detected ruminal pH increased from 5.83 to 5.94. Milk, fat, and protein yields declined as CaOSt increased and DM intake declined with the result that net energy in milk declined by approximately 1 Mcal per 4% increase in CaOSt. Time spent ruminating (min∙kg(-1) DM intake) increased with increasing CaOSt, though total minutes per day were unaffected. These insights on the effect of substitution of treated corn stover for corn grain may be used to predict the effect on nutrient supply to the cow over a range of substitution levels. The acceptability of the effect will depend on the economics of milk production and availabilities of feedstuffs.


Subject(s)
Cattle/metabolism , Lactation , Zea mays/metabolism , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Dietary Fiber/metabolism , Digestion , Female , Fermentation , Milk/chemistry , Rumen/metabolism , Starch/metabolism
14.
J Dairy Sci ; 99(1): 245-57, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26601577

ABSTRACT

Fructans are an important nonfiber carbohydrate in cool season grasses. Their fermentation by ruminal microbes is not well described, though such information is needed to understand their nutritional value to ruminants. Our objective was to compare kinetics and product formation of orchardgrass fructan (phlein; PHL) to other nonfiber carbohydrates when fermented in vitro with mixed or pure culture ruminal microbes. Studies were carried out as randomized complete block designs. All rates given are first-order rate constants. With mixed ruminal microbes, rate of substrate disappearance tended to be greater for glucose (GLC) than for PHL and chicory fructan (inulin; INU), which tended to differ from each other (0.74, 0.62, and 0.33 h(-1), respectively). Disappearance of GLC had almost no lag time (0.04 h), whereas the fructans had lags of 1.4h. The maximum microbial N accumulation, a proxy for cell growth, tended to be 20% greater for PHL and INU than for GLC. The N accumulation rate for GLC (1.31h(-1)) was greater than for PHL (0.75 h(-1)) and INU (0.26 h(-1)), which also differed. More microbial glycogen (+57%) was accumulated from GLC than from PHL, though accumulation rates did not differ (1.95 and 1.44 h(-1), respectively); little glycogen accumulated from INU. Rates of organic acid formation were 0.80, 0.28, and 0.80 h(-1) for GLC, INU, and PHL, respectively, with PHL tending to be greater than INU. Lactic acid production was more than 7-fold greater for GLC than for the fructans. The ratio of microbial cell carbon to organic acid carbon tended to be greater for PHL (0.90) and INU (0.86) than for GLC (0.69), indicating a greater yield of cell mass per amount of substrate fermented with fructans. Reduced microbial yield for GLC may relate to the greater glycogen production that requires ATP, and lactate production that yields less ATP; together, these processes could have reduced ATP available for cell growth. Acetate molar proportion was less for GLC than for fructans, and less for PHL than for INU. In studies with pure cultures, all microbes evaluated showed differences in specific growth rate constants (µ) for GLC, fructose, sucrose, maltose, and PHL. Selenomonas ruminantium and Streptococcus bovis showed the highest µ for PHL (0.55 and 0.67 h(-1), respectively), which were 50 to 60% of the µ achieved for GLC. The 10 other species tested had µ between 0.01 and 0.11h(-1) with PHL. Ruminal microbes use PHL differently than they do GLC or INU.


Subject(s)
Dactylis/metabolism , Fructans/metabolism , Inulin/metabolism , Selenomonas/metabolism , Streptococcus bovis/metabolism , Adenosine Triphosphate/metabolism , Animals , Carbohydrate Metabolism , Carbon/metabolism , Cichorium intybus/metabolism , Dactylis/chemistry , Fermentation , Fructose/metabolism , Glucose/metabolism , Glycogen/metabolism , Kinetics , Lactic Acid/metabolism , Maltose/metabolism , Rumen/microbiology , Species Specificity , Sucrose/metabolism
15.
J Dairy Sci ; 98(6): 3988-99, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25828661

ABSTRACT

Volatile fatty acid concentrations ([VFA], mM) have long been used to assess the effect of dietary treatments on ruminal fermentation in vivo. However, discrepancies in statistical results between [VFA] and VFA pool size (VFAmol) possibly related to ruminal digesta liquid amount (LIQ, kg) indicate potential issues with the use of [VFA]. We investigated relationships among [VFA], VFAmol, and LIQ measured 2 h postfeeding using individual lactating cow data (n=175) from 7 separate feeding studies. Regression analyses were performed using mixed models with "study" as a discrete random variable. The mean across studies and average range of values within studies, respectively, were 151 and 75 for [VFA], 11.2 and 9.8 for VFAmol, 73.3 and 41.0 for LIQ, and 289 and 83 mmol/kg for rumen fluid osmolality. Liquid amount changed with VFAmol (3.76 VFAmol+31.2; average within-study R2=0.69), but the relationship was weak between [VFA] and LIQ (0.524 LIQ+112.8; average within-study R2=0.12). The relationship between LIQ and VFAmol was likely a function of the osmotic gradient between rumen liquid and blood. The VFA are a major ruminal solute; VFAmol amounts can affect water flux in the rumen as similar tonicities of rumen fluid and blood are maintained. This also has a damping effect on ruminal solute concentration, creating the weak relationship between [VFA] and LIQ. Within studies, similar [VFA] were found in LIQ differing by 30 kg or more. The difference between minimum and maximum LIQ within cow within study was 12.7 kg (standard deviation=7.1), so inclusion of "cow" in analyses did not correct for the variation in LIQ. To allow valid comparisons of experimental treatments, responses must be on an equivalent basis; concentrations in different LIQ are not on an equivalent basis and so are not valid to use for comparing treatment effects. The [VFA] changed with VFAmol (5.80 VFAmol+86.3; average within-study R2=0.56). However, the ratio of [VFA] to VFAmol ranged from 9.0 to 24.1 as a function of 1,000/LIQ; this reflects the inherent calculated relationship among the variables. The varying relationship of [VFA] to VFAmol further indicates that [VFA] is not an appropriate measure to evaluate the progress or effect of treatments on ruminal fermentation. Predictions of LIQ and VFAmol using cow and ruminal measures were insufficiently precise to be used in research. Previously drawn conclusions based on [VFA] need to be reevaluated, and alternate evaluations for in vivo ruminal fermentation are needed.


Subject(s)
Cattle/physiology , Fatty Acids, Volatile/analysis , Fermentation , Animals , Diet/veterinary , Female , Lactation , Rumen/metabolism
16.
J Dairy Sci ; 98(5): 3247-56, 2015 May.
Article in English | MEDLINE | ID: mdl-25747833

ABSTRACT

Water is a critical nutrient for dairy cows, with intake varying with environment, production, and diet. However, little work has evaluated the effects of water intake on rumen parameters. Using dietary potassium carbonate (K2CO3) as a K supplement to increase water intake, the objective of this study was to evaluate the effect of K2CO3 supplementation on water intake and on rumen parameters of lactating dairy cows. Nine ruminally cannulated, late-lactation Holstein cows (207±12d in milk) were randomly assigned to 1 of 3 treatments in a replicated 3×3 Latin square design with 18-d periods. Dietary treatments (on a dry matter basis) were no added K2CO3 (baseline dietary K levels of 1.67% dietary K), 0.75% added dietary K, and 1.5% added dietary K. Cows were offered treatment diets for a 14-d adaption period followed by a 4-d collection period. Ruminal total, liquid, and dry matter digesta weights were determined by total rumen evacuations conducted 2h after feeding on d 4 of the collection period. Rumen fluid samples were collected to determine pH, volatile fatty acids, and NH3 concentrations, and Co-EDTA was used to determine fractional liquid passage rate. Milk samples were collected twice daily during the collection period. Milk, milk fat, and protein yields showed quadratic responses with greatest yields for the 0.75% added dietary K treatment. Dry matter intake showed a quadratic response with 21.8kg/d for the 0.75% added dietary K treatment and 20.4 and 20.5kg/d for control and the 1.5% added dietary K treatment, respectively. Water intake increased linearly with increasing K2CO3 supplementation (102.4, 118.4, and 129.3L/d) as did ruminal fractional liquid passage rate in the earlier hours after feeding (0.118, 0.135, and 0.141 per hour). Total and wet weights of rumen contents declined linearly and dry weight tended to decline linearly as dietary K2CO3 increased, suggesting that the increasing water intake and fractional liquid passage rate with increasing K2CO3 increased the overall ruminal turnover rate. Ruminal ammonia concentrations declined linearly and pH increased linearly as K supplementation increased. As a molar percentage of total volatile fatty acids, acetate increased linearly as dietary K increased, though propionate declined. Increasing dietary K2CO3 and total K in the diets of lactating dairy cows increased water consumption and modified ruminal measures in ways suggesting that both liquid and total ruminal turnover were increased as both water and K intake increased.


Subject(s)
Carbonates/administration & dosage , Cattle/physiology , Drinking Water , Drinking , Potassium/administration & dosage , Rumen/metabolism , Ammonia/analysis , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Carbonates/analysis , Diet/veterinary , Dietary Supplements , Fatty Acids, Volatile/analysis , Female , Hydrogen-Ion Concentration , Lactation , Milk/chemistry , Potassium/analysis
17.
J Dairy Sci ; 97(9): 5676-87, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24997669

ABSTRACT

The objective of this study was to determine the effect of substituting corn bran (CB) for dried ground corn grain (CG) in the nonforage portion of high-forage (HF) and low-forage (LF) diets. Twelve multiparous and 12 primiparous Holsteins were assigned to 4 diets using six 4× Latin squares with 3-wk periods. Forage was 64 or 38% of the total mixed ration (% of dry matter). On a dry matter basis, the HFCG diet had 20% CG, the LFCG diet had 39% CG, the HFCB diet had 19% CB, and the LFCB diet had 38% CB. Digestible organic matter intake (OMI) and milk energy yield were lower for CB compared with CG within forage level. Digestible OMI was greater (1.9kg/d) for the LFCG compared with the HFCG treatment. When CB replaced forage (LFCB vs. HFCB), digestible OMI was not different but milk energy yield was greater with the LFCB diet. The LFCG diet supported the greatest milk, milk protein, and milk energy yield. Decreased concentration of milk protein and increased concentration of milk urea nitrogen when feeding CB compared with CG suggests that lack of fermentable energy in the CB diets may have limited rumen microbial protein synthesis. Total substitution of CG with CB in the nonforage portion did not support maximum milk production, even when forage was reduced at the same time (HFCG vs. LFCB). Predicted neutral detergent fiber (NDF) digestibility at 1 times maintenance, based on chemical analysis of the individual feeds, was 22 percentage units greater for CB than for the forage mix (68.9 vs. 46.9%). In vitro NDF digestibility (30h) was 19.4 percentage units greater for CB than for the forage mix (68.9 vs. 49.5%). However, in vivo NDF digestibility of the diet when CB replaced forage (HFCB vs. LFCB) was similar (44.1 vs. 44.5%). Similarly, predicted total digestible nutrients at the production level of intake, based on chemical analysis, were greater for the CB treatments and lower for the CG treatments than those observed in vivo.


Subject(s)
Animal Feed , Cattle/metabolism , Diet/veterinary , Digestion/physiology , Lactation/physiology , Zea mays , Animal Feed/analysis , Animals , Dietary Fiber/metabolism , Energy Intake , Female , Fermentation , Food Handling/methods , Hydrogen-Ion Concentration , Milk/chemistry , Nutritive Value , Rumen/metabolism , Zea mays/metabolism
18.
J Dairy Sci ; 97(5): 3042-52, 2014 May.
Article in English | MEDLINE | ID: mdl-24612800

ABSTRACT

In response to drought-induced forage shortages along with increased corn and soy prices, this study was conducted to evaluate lactation responses of dairy cows to lower-forage diets supplemented with forage substitutes. By-product feeds were used to completely replace corn grain and soybean feeds. Forty-eight late-lactation cows were assigned to 1 of 4 diets using a randomized complete block design with a 2-wk covariate period followed by a 4-wk experimental period. The covariate diet contained corn grain, soybean meal, and 61% forage. Experimental diets contained chopped wheat straw (WS)/sugar beet pulp at 0/12, 3/9, 6/6, or 9/3 percentages of diet dry matter (DM). Corn silage (20%), alfalfa silage (20%), pelleted corn gluten feed (25.5%), distillers grains (8%), whole cottonseed (5%), cane molasses/whey blend (7%), and vitamin and mineral mix with monensin (2.5%) comprised the rest of diet DM. The WS/sugar beet pulp diets averaged 16.5% crude protein, 35% neutral detergent fiber, and 11% starch (DM basis). Cows consuming the experimental diets maintained a 3.5% fat- and protein-corrected milk production (35.2 kg; standard deviation=5.6 kg) that was numerically similar to that measured in the covariate period (35.3 kg; standard deviation=5.0 kg). Intakes of DM and crude protein declined linearly as WS increased, whereas neutral detergent fiber intake increased linearly. Linear increases in time spent ruminating (from 409 to 502 min/d) and eating (from 156 to 223 min/d) were noted as WS inclusion increased. Yields of milk fat and 3.5% fat-and protein-corrected milk did not change as WS increased, but those of protein and lactose declined linearly. Phosphorous intakes were in excess of recommended levels and decreased linearly with increasing WS inclusion. Nutritional model predictions for multiparous cows were closest to actual performance for the National Research Council 2001 model when a metabolizable protein basis was used; primiparous cow performance was better predicted by energy-based predictions made with the National Research Council or Cornell Net Carbohydrate and Protein System models. Model predictions of performance showed a quadratic diet effect with increasing WS. Lactating dairy cows maintained production on low-forage diets that included forage substitutes, and in which by-product feeds fully replaced corn grain and soybean. However, longer-term studies are needed to evaluate animal performance and to improve model predictions of performance on these nontraditional diets.


Subject(s)
Cattle/physiology , Diet/veterinary , Dietary Supplements , Eating/physiology , Silage/analysis , Animals , Cottonseed Oil , Dietary Fiber/metabolism , Female , Lactation/physiology , Medicago sativa , Milk Proteins , Monensin , Glycine max , Starch , Triticum , Zea mays
19.
J Dairy Sci ; 96(11): 7195-7209, 2013.
Article in English | MEDLINE | ID: mdl-24011950

ABSTRACT

Sixty samples of 'ForagePlus' oat were selected from a previous plot study for analysis of in vitro gas production (IVGP) on the basis of 2 factors: (1) high (n=29) or low (n=31) neutral detergent fiber (NDF; 62.7±2.61 and 45.1±3.91%, respectively); and (2) the range of water-soluble carbohydrates (WSC) within the high- and low-NDF groups. For the WSC selection factor, concentrations ranged from 4.7 to 13.4% (mean=7.9±2.06%) and from 3.5 to 19.4% (mean=9.7±4.57%) within high- and low-NDF forages, respectively. Our objectives were to assess the relationships between IVGP and various agronomic or nutritional characteristics for high- and low-NDF fall-oat forages. Cumulative IVGP was fitted to a single-pool nonlinear regression model: Y=MAX × (1 - e ([-)(K)(× (t - lag)])), where Y=cumulative gas produced (mL), MAX=maximum cumulative gas produced with infinite incubation time (mL), K=rate constant, t=incubation time (h), and lag=discrete lag time (h). Generally, cumulative IVGP after 12, 24, 36, or 48h within high-NDF fall-oat forages was negatively correlated with NDF, hemicellulose, lignin, and ash, but positively correlated with WSC, nonfiber carbohydrate (NFC), and total digestible nutrients (TDN). For low-NDF fall-grown oat forages, IVGP was positively correlated with growth stage, canopy height, WSC, NFC, and TDN; negative correlations were observed with ash and crude protein (CP) but not generally with fiber components. These responses were also reflected in multiple regression analysis for high- and low-NDF forages. After 12, 24, or 36h of incubation, cumulative IVGP within high-NDF fall-oat forages was explained by complex regression equations utilizing (lignin:NDF)(2), lignin:NDF, hemicellulose, lignin, and TDN(2) as independent variables (R(2)≥0.43). Within low-NDF fall-grown oat forages, cumulative IVGP at these incubation intervals was explained by positive linear relationships with NFC that also exhibited high coefficients of determination (R(2)≥0.75). Gas production was accelerated at early incubation times within low-NDF forages, specifically in response to large pools of WSC that were most likely to be present as forages approached boot stage by late-fall.


Subject(s)
Avena/chemistry , Avena/growth & development , Dietary Carbohydrates/analysis , Dietary Fiber/analysis , Gases/metabolism , Animal Feed/analysis , Animals , Body Fluids/metabolism , Cattle , Dietary Fiber/metabolism , Digestion , Female , Fermentation , In Vitro Techniques , Regression Analysis , Rumen/metabolism , Seasons , Solubility , Water
20.
J Dairy Sci ; 95(4): 1992-2003, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22459845

ABSTRACT

In vitro neutral detergent fiber (NDF) digestibility (NDFD) is an empirical measurement of fiber fermentability by rumen microbes. Variation is inherent in all assays and may be increased as multiple steps or differing procedures are used to assess an empirical measure. The main objective of this study was to evaluate variability within and among laboratories of 30-h NDFD values analyzed in repeated runs. Subsamples of alfalfa (n=4), corn forage (n=5), and grass (n=5) ground to pass a 6-mm screen passed a test for homogeneity. The 14 samples were sent to 10 laboratories on 3 occasions over 12 mo. Laboratories ground the samples and ran 1 to 3 replicates of each sample within fermentation run and analyzed 2 or 3 sets of samples. Laboratories used 1 of 2 NDFD procedures: 8 labs used procedures related to the 1970 Goering and Van Soest (GVS) procedure using fermentation vessels or filter bags, and 2 used a procedure with preincubated inoculum (PInc). Means and standard deviations (SD) of sample replicates within run within laboratory (lab) were evaluated with a statistical model that included lab, run within lab, sample, and lab × sample interaction as factors. All factors affected mean values for 30-h NDFD. The lab × sample effect suggests against a simple lab bias in mean values. The SD ranged from 0.49 to 3.37% NDFD and were influenced by lab and run within lab. The GVS procedure gave greater NDFD values than PInc, with an average difference across all samples of 17% NDFD. Because of the differences between GVS and PInc, we recommend using results in contexts appropriate to each procedure. The 95% probability limits for within-lab repeatability and among-lab reproducibility for GVS mean values were 10.2 and 13.4%, respectively. These percentages describe the span of the range around the mean into which 95% of analytical results for a sample fall for values generated within a lab and among labs. This degree of precision was supported in that the average maximum difference between samples that were not declared different by means separation was 4.4% NDFD. Although the values did not have great precision, GVS labs were able to reliably rank sample data in order of 30-h NDFD (Spearman correlation coefficient = 0.93) with 80% of the rankings correct or off by only 1 ranking. A relative ranking system for NDFD could reduce the effect of within- and among-lab variation in numeric values. Such a system could give a more accurate portrayal of the comparative values of samples than current numeric values imply.


Subject(s)
Dietary Fiber/metabolism , Digestion , Animals , Fermentation , In Vitro Techniques , Laboratories/standards , Medicago sativa/metabolism , Reproducibility of Results , Rumen/metabolism , Sensitivity and Specificity , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...