Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Sci Rep ; 14(1): 10783, 2024 05 11.
Article En | MEDLINE | ID: mdl-38734725

Necrotising enterocolitis (NEC) has a complex pathophysiology but the common end-point is ischaemia reperfusion injury (IRI) and intestinal necrosis. We have previously reported that RIC significantly reduces the intestinal injury in a rat model of NEC. Here we describe the changes in intestinal mRNA occurring in the intestine of animals exposed to IRI, both with and without RIC. Related rat-pups were randomly assigned to four groups: SHAM, IRI only, RIC only and RIC + IRI. IRI animals, underwent 40 min of intestinal ischaemia, and 90 min of reperfusion. Animals that underwent RIC had three cycles of 5 min of alternating ischaemia/reperfusion by means of a ligature applied to the hind limb. Samples from the terminal ileum were immediately stored in RNA-preserving media for later next generation sequencing and transciptome analysis using R v 3.6.1. Differential expression testing showed that 868 genes differentially expressed in animals exposed to RIC alone compared to SHAM and 135 in the IRI and RIC group compared to IRI alone. Comparison between these two sets showed that 25 genes were differentially expressed in both groups. Pro-inflammatory molecules: NF-ĸß2, Cxcl1, SOD2 and Map3k8 all show reduced expression in response to RIC. Targeted gene analysis revealed increased expression in PI3K which is part of the so-called RISK-pathway which is a key part of the protective mechanisms of RIC in the heart. Overall, this transcriptomic analysis shows that RIC provides a protective effect to the intestine via anti-inflammatory pathways. This could be particularly relevant to treating and preventing NEC.


Disease Models, Animal , Enterocolitis, Necrotizing , Gene Expression Profiling , Reperfusion Injury , Animals , Enterocolitis, Necrotizing/genetics , Enterocolitis, Necrotizing/pathology , Enterocolitis, Necrotizing/metabolism , Rats , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Ischemic Preconditioning/methods , Transcriptome
2.
J Pediatr Surg ; 58(7): 1389-1398, 2023 Jul.
Article En | MEDLINE | ID: mdl-36621342

OBJECTIVE: Remote ischaemic conditioning (RIC) has been shown to reduce ischaemia-reperfusion injury(IRI) in multiple organ systems. IRI is seen in multiple bowel pathologies in the newborn, including NEC. We investigated the potential of RIC as a novel therapy for various intestinal pathologies in the newborn. METHODS: We used an established intestinal IRI model in rat pups which results in similar intestinal injury to necrotising enterocolitis (NEC). Animals were randomly allocated to IRI only(n = 14), IRI + RIC(n = 13) or sham laparotomy(n = 10). The macroscopic extent of intestinal injury is reported as a percentage of total small bowel. Injury severity was measured using Chiu-Park scoring. Neutrophil infiltration/activation was assayed by myeloperoxidase activity. Immunohistochemistry was used to assess the expression of hypoxia-inducible factor alpha (HIF-1α). Data are median (interquartile range). RESULTS: Animals that underwent RIC showed a decreased extent of macroscopic injury from 100%(85-100%) in the IRI only group to 58%(15-84%, p = 0.003) in the IRI + RIC group. Microscopic injury score was significantly lower in animals that underwent RIC compared to IRI alone (3.5[1.25-5] vs 5.5[4-6], p = 0.014). Intestinal myeloperoxidase activity in animals exposed to IRI was 3.4 mU/mg of tissue (2.5-3.7) and 2.1 mU/mg(1.5-2.8) in the IRI + RIC group(p = 0.047). HIF-1α expression showed a non-significant trend towards reduced expression in the IRI + RIC group. CONCLUSIONS: RIC reduces the extent and severity of bowel injury in this animal model, supporting the hypothesis that RIC has therapeutic potential for intestinal diseases in the newborn.


Ischemic Preconditioning , Reperfusion Injury , Rats , Animals , Animals, Newborn , Peroxidase , Ischemic Preconditioning/methods , Reperfusion Injury/prevention & control , Ischemia
...