Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 2118, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33483531

ABSTRACT

Lung fibrosis, or the scarring of the lung, is a devastating disease with huge unmet medical need. There are limited treatment options and its prognosis is worse than most types of cancer. We previously discovered that MK-0429 is an equipotent pan-inhibitor of αv integrins that reduces proteinuria and kidney fibrosis in a preclinical model. In the present study, we further demonstrated that MK-0429 significantly inhibits fibrosis progression in a bleomycin-induced lung injury model. In search of newer integrin inhibitors for fibrosis, we characterized monoclonal antibodies discovered using Adimab's yeast display platform. We identified several potent neutralizing integrin antibodies with unique human and mouse cross-reactivity. Among these, Ab-31 blocked the binding of multiple αv integrins to their ligands with IC50s comparable to those of MK-0429. Furthermore, both MK-0429 and Ab-31 suppressed integrin-mediated cell adhesion and latent TGFß activation. In IPF patient lung fibroblasts, TGFß treatment induced profound αSMA expression in phenotypic imaging assays and Ab-31 demonstrated potent in vitro activity at inhibiting αSMA expression, suggesting that the integrin antibody is able to modulate TGFß action though mechanisms beyond the inhibition of latent TGFß activation. Together, our results highlight the potential to develop newer integrin therapeutics for the treatment of fibrotic lung diseases.


Subject(s)
Antibodies/metabolism , Fibroblasts/metabolism , Integrin alphaV/metabolism , Pulmonary Fibrosis/metabolism , Animals , Antibodies/immunology , Bleomycin , CHO Cells , Cells, Cultured , Cricetinae , Cricetulus , Fibroblasts/cytology , Humans , Integrin alphaV/immunology , Male , Mice, Inbred C57BL , Naphthyridines/pharmacology , Propionates/pharmacology , Protein Binding , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/prevention & control
2.
J Vet Sci ; 5(4): 309-18, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15613814

ABSTRACT

Recently, the antinociceptive and anti-inflammatory efficacy of bee venom (BV, Apis mellifera) has been confirmed in rodent models of inflammation and arthritis. Interestingly, the antinociceptive and anti-inflammatory effect of whole BV can be reproduced by two water-soluble fractions of BV (>20 kDa:BVAF1 and<10 kDa: BVAF3). Based on these scientific findings, BV and its effective water-soluble fractions have been proposed as potential anti-inflammatory and antinociceptive pharmaceuticals. While BV's anti-inflammatory and antinociceptive properties have been well documented, there have been no careful studies of potential, side effects of BV and its fractions when administered in the therapeutic range (BV, 5 microgram/kg; BVAF1, 0.2 microgram/kg: BVAF3, 3 microgram/kg; subcutaneous or intradermal). Such information is critical for future clinical use of BV in humans. Because of this paucity of information, the present study was designed to determine the general pharmacological/physiological effects of BV and its fractions administration on the rodent central nervous, cardiovascular, respiratory and gastrointestinal system. Subcutaneous BV and its fractions treatment did not produce any significant effects on general physiological functions at the highest dose tested (200-fold and 100-fold doses higher than that used clinically, respectively) except writhing test. These results demonstrate that doses of BV or BV subfractions in the therapeutic range or higher can be used as safe antinociceptive and anti-inflammatory agents.


Subject(s)
Analgesics/pharmacology , Anti-Inflammatory Agents/pharmacology , Bee Venoms/pharmacology , Cardiovascular System/drug effects , Central Nervous System/drug effects , Digestive System/drug effects , Respiratory System/drug effects , Animals , Male , Mice , Mice, Inbred ICR , Rabbits , Rats , Rats, Sprague-Dawley
3.
J Pain ; 5(6): 297-303, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15336634

ABSTRACT

UNLABELLED: Chemical acupuncture with diluted bee venom (DBV), termed apipuncture, has been traditionally used in oriental medicine to treat several inflammatory diseases and chronic pain conditions. In the present study we investigated the potential antihyperalgesic and antiallodynic effects of apipuncture in a rat neuropathic pain model. DBV (0.25 mg/kg, subcutaneous) was injected into the Zusanli acupoint 2 weeks after chronic constrictive injury (CCI) of the sciatic nerve. Between 5 and 45 minutes after DBV injection, we observed a significant reduction in the thermal hyperalgesia induced by CCI, but apipuncture failed to reduce CCI-induced mechanical allodynia. We subsequently examined whether this antihyperalgesic effect of apipuncture was related to the activation of spinal opioid receptors and/or alpha2-adrenoceptors. Intrathecal pretreatment with naloxone (10 microg/rat), an opioid receptor antagonist, did not reverse the antihyperalgesic effect of apipuncture, whereas pretreatment with idazoxan (40 microg/rat), an alpha2-adrenoceptor antagonist, completely blocked the effect of apipuncture. These results indicate that DBV-induced apipuncture significantly reduces the thermal hyperalgesia generated by CCI and also suggest that this antihyperalgesic effect is dependent on the activation of alpha2-adrenoceptors, but not opioid receptors, in the spinal cord. PERSPECTIVE: The antinociceptive effect of apipuncture was evaluated in a rodent neuropathic pain model. The relieving effect of apipuncture on thermal hyperalgesia was found to be mediated by spinal alpha2-adrenoceptors, but not opioid receptors. These data suggest that apipuncture might be an effective alternative therapy for patients with painful peripheral neuropathy, especially for those who are poorly responsive to opioid analgesics.


Subject(s)
Acupuncture Points , Bee Venoms/administration & dosage , Hyperalgesia/therapy , Pain Management , Receptors, Adrenergic, alpha-2/physiology , Adrenergic Antagonists/pharmacology , Adrenergic alpha-2 Receptor Antagonists , Animals , Disease Models, Animal , Male , Rats , Rats, Sprague-Dawley , Spinal Cord/metabolism
4.
J Vet Med Sci ; 65(3): 349-55, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12679565

ABSTRACT

In two previous reports, we have demonstrated that injection of bee venom (BV) into an acupoint produces a significant antinociceptive and anti-inflammatory effect in both a mouse model of visceral nociception and a rat model of chronic arthritis. The present study was designed to evaluate the potential antinociceptive effect of BV pretreatment on formalin-induced pain behavior and it associated spinal cord Fos expression in rats. Adult Sprague-Dawley rats were injected with BV directly into the Zusanli (ST36) acupoint or into an arbitrary non-acupoint located on the back. BV pretreatment into the Zusanli acupoint significantly decreased paw-licking time in the late phase of the formalin test. In contrast, BV injected into a non-acupoint in the back region did not suppress the paw-licking time. In addition, BV pretreatment into the Zusanli acupoint markedly inhibited spinal cord Fos expression induced by formalin injection. These findings indicate that BV pretreatment into the Zusanli acupoint has an antinociceptive effect on formalin-induced pain behavior.


Subject(s)
Acupuncture Points , Bee Venoms/pharmacology , Formaldehyde/pharmacology , Gene Expression Regulation/drug effects , Pain Management , Pain/drug therapy , Proto-Oncogene Proteins c-fos/metabolism , Spinal Cord/metabolism , Animals , Dose-Response Relationship, Drug , Male , Pain/chemically induced , Rats , Rats, Sprague-Dawley
5.
J Vet Sci ; 3(4): 343-9, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12819385

ABSTRACT

In this study, we aimed to determine the antinociceptive and/or anti-inflammatory effect of Bang-Poong (BP, Radix Ledebouriellae) on Freund's adjuvant-induced arthritis in rats. Traditionally, BP has been used to treat several inflammatory diseases such as arthritis. Whole BP is extracted into two fractions that were ethylacetate and hexane-soluble fractions. Adult Sprague-Dawley rats (n=30, 130-150 g) were subcutaneously administered by the Freund's complete adjuvant (FCA) into the plantar surface of right hindpaw. Twelve days after the injection of FCA, the rats initially showed typical inflammatory edema and arthritis-related symptoms on the contralateral side (i.e. left hindpaw). Both antinociceptive (evaluation of mechanical, thermal pain threshold and analysis of spinal Fos expression) and anti- inflammatory (evaluation of paw edema, serum interleukin-6 level and x-ray analysis) effect of BP extracts were examined. The ethylacetate fraction of BP (BPE) significantly suppressed the FCA-induced paw edema as well as the serum level of interleukin-6 and it alleviated the radiological changes. Moreover, both mechanical and thermal hyperalgesia were attenuated by the treatment of BPE. In addition, spinal Fos expression that was increased by FCA- injection was suppressed in BPE group. Therefore, this study showed that BPE produced significant both antinociceptive and anti-inflammatory effects on FCA- induced arthritis in rats, while hexane fraction of BP did not show these effects. In conclusion, it is suggested that the ethylacetate fraction of BP is recommended to alleviate the arthritis-related symptoms in human according to the results of this study.


Subject(s)
Analgesics/pharmacology , Anti-Inflammatory Agents/pharmacology , Arthritis, Experimental/drug therapy , Drugs, Chinese Herbal/pharmacology , Phytotherapy , Animals , Arthritis, Experimental/diagnostic imaging , Edema/veterinary , Hindlimb/diagnostic imaging , Hyperalgesia/veterinary , Interleukin-6/blood , Male , Pain Measurement/veterinary , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-fos/metabolism , Radiography , Rats , Rats, Sprague-Dawley , Spinal Cord/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...