Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 969
Filter
1.
Sleep ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087877

ABSTRACT

STUDY OBJECTIVES: Numerous observational studies link obstructive sleep apnea (OSA) to inflammatory proteins, yet the directionality of these associations remains ambiguous. Therefore, we aimed to clarify the potential associations of gene-predicted inflammatory proteins with OSA. METHODS: Based on genome-wide association study data, we applied Mendelian randomization (MR) to explore potential connections between circulating inflammatory proteins and OSA, primarily using the inverse variance weighting method for robustness. Cochran's Q test, MR‒Egger intercept test, MR-PRESSO, and leave-one-out method were used to perform sensitivity tests for pleiotropy and heterogeneity. Replication analyses and meta-analyses were performed using other independent data. Steiger tests and multivariate MR assessed the independent effects of exposure factors, and the functional mapping and annotation (FUMA) platform was used to identify key genes to enhance the understanding of genetics. RESULTS: Our investigation revealed 21 circulating inflammatory proteins significantly associated with OSA-related phenotypes. Notably, IL-10RA, IL-18R1, TNFSF14, CCL23, ADA, and SLAMF1 had significant effects on multiple phenotypes. After FDR correction, IL-18R1, SLAMF1, IL-10RA, and IL-17C were identified as important candidates for OSA, and multivariate MR analysis strengthened the independent heritability of 20 inflammatory factors. The FUMA platform revealed seven overlapping genes: ROBO1, PRIM1, NACA, SHBG, HSD17B6, RBMS2, and WWOX. All reverse MR analyses and sensitivity analyses confirmed the robustness of these associations. CONCLUSIONS: Our results underscore crucial associations between inflammatory proteins and OSA pathogenesis, revealing new correlates and susceptibility genes. These findings advance biomarker identification for OSA risk and highlight the importance of genetic and inflammatory profiles in OSA management.

2.
Bioact Mater ; 41: 257-270, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39149595

ABSTRACT

Due to the limited self-repair ability of the annulus fibrosus (AF), current tissue engineering strategies tend to use structurally biomimetic scaffolds for AF defect repair. However, the poor integration between implanted scaffolds and tissue severely affects their therapeutic effects. To solve this issue, we prepared a multifunctional scaffold containing loaded lysyl oxidase (LOX) plasmid DNA exosomes and manganese dioxide nanoparticles (MnO2 NPs). LOX facilitates extracellular matrix (ECM) cross-linking, while MnO2 NPs inhibit excessive reactive oxygen species (ROS)-induced ECM degradation at the injury site, enhancing the crosslinking effect of LOX. Our results revealed that this multifunctional scaffold significantly facilitated the integration between the scaffold and AF tissue. Cells were able to migrate into the scaffold, indicating that the scaffold was not encapsulated as a foreign body by fibrous tissue. The functional scaffold was closely integrated with the tissue, effectively enhancing the mechanical properties, and preventing vascular invasion, which emphasized the importance of scaffold-tissue integration in AF repair.

3.
Animals (Basel) ; 14(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39123710

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is a major causative pathogen of a highly contagious, acute enteric viral disease. This study evaluated the emergence of nine variants in Jiangsu and Anhui provinces of China from 2020 to 2023. S gene-based phylogenetic analysis indicated that three variants belong to the G1c subgroup, while the other six strains are clustered within the G2c subgroup. Recombination analyses supported that three variants of the G1c subgroup were likely derived from recombination of parental variants FR0012014 and a donor variant AJ1102. In addition, there are novel mutations on amino acid 141-148 and these likely resulted in changes in antigenicity in the three variants. These results illustrated that the study provides novel insights into the epidemiology, evolution, and transmission of PEDV in China.

4.
J Transl Med ; 22(1): 730, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103879

ABSTRACT

BACKGROUND: Inflammation plays a critical role in tumor development. Inflammatory cell infiltration and inflammatory mediator synthesis cause changes in the tumor microenvironment (TME) in several cancers, especially in intrahepatic cholangiocellular carcinoma (ICC). However, methods to ascertain the inflammatory state of patients using reliable biomarkers are still being explored. METHOD: We retrieved the RNA sequencing and somatic mutation analyses results and the clinical characteristics of 244 patients with ICC from published studies. We performed consensus clustering to identify the molecular subtypes associated with inflammation. We compared the prognostic patterns, clinical characteristics, somatic mutation profiles, and immune cell infiltration patterns across inflammatory subtypes. We performed quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC) to confirm gene expression. We performed logistic regression analyses to construct a nomogram predicting the inflammatory status of patients with ICC. RESULTS: Our results confirmed that ICC can be categorized into an inflammation-high subtype (IHS) and an inflammation-low subtype (ILS). Patients from each group had distinct prognosis, clinical characteristics, and TME composition. Patients with ICC in the IHS group showed poorer prognosis owing to the immunosuppressive microenvironment and high frequency of KRAS and TP53 mutations. Cancer-associated fibroblast (CAF)-derived COLEC11 reduced myeloid inflammatory cell infiltration and attenuated inflammatory responses. The results of qRT-PCR and IHC experiments confirmed that COLEC11 expression levels were significantly reduced in tumor tissues compared to those in paracancerous tissues. Patients with ICC in the IHS group were more likely to respond to treatment with immune checkpoint inhibitors (ICIs) owing to their higher tumor mutational burden (TMB) scores, tumor neoantigen burden (TNB) scores, neoantigen counts, and immune checkpoint expression levels. Finally, we developed a nomogram to effectively predict the inflammatory status of patients with ICC based on their clinical characteristics and inflammatory gene expression levels. We evaluated the calibration, discrimination potential, and clinical utility of the nomogram. CONCLUSION: The inflammatory response in IHS is primarily induced by myeloid cells. COLEC11 can reduce the infiltration level of this group of cells, and myeloid inflammatory cells may be a novel target for ICC treatment. We developed a novel nomogram that could effectively predict the inflammatory state of patients with ICC, which will be useful for guiding individualized treatment plans.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Inflammation , Tumor Microenvironment , Humans , Cholangiocarcinoma/pathology , Cholangiocarcinoma/genetics , Inflammation/pathology , Inflammation/genetics , Tumor Microenvironment/immunology , Male , Female , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/genetics , Middle Aged , Prognosis , Mutation/genetics , Aged , Gene Expression Regulation, Neoplastic , Nomograms , Reproducibility of Results
5.
Microsyst Nanoeng ; 10: 104, 2024.
Article in English | MEDLINE | ID: mdl-39050588

ABSTRACT

Hydraulic technology with smaller sizes and higher reliability trends, including fault prediction and intelligent control, requires high-performance temperature and pressure-integrated sensors. Current designs rely on planar wafer- or chip-level integration, which is limited by pressure range, chip size, and low reliability. We propose a small-size temperature/high-pressure integrated sensor via the flip-chip technique. The pressure and temperature units are arranged vertically, and the sensing signals of the two units are integrated into one plane through silicon vias and gold-gold bonding, reducing the lateral size and improving the efficiency of signal transmission. The flip-chip technique ensures a reliable electrical connection. A square diaphragm with rounded corners is designed and optimised with simulation to sense high pressure based on the piezoresistive effect. The temperature sensing unit with a thin-film platinum resistor measures temperature and provides back-end high-precision compensation, which will improve the precision of the pressure unit. The integrated chip is fabricated by MEMS technology and packaged to fabricate the extremely small integrated sensor. The integrated sensor is characterised, and the pressure sensor exhibits a sensitivity and sensitivity drift of 7.97 mV/MPa and -0.19% FS in the range of 0-20 MPa and -40 to 120 °C. The linearity, hysteresis, repeatability, accuracy, basic error, and zero-time drift are 0.16% FS, 0.04% FS, 0.06% FS, 0.18% FS, ±0.23% FS and 0.04% FS, respectively. The measurement error of the temperature sensor and temperature coefficient of resistance is less than ±1 °C and 3142.997 ppm/°C, respectively. The integrated sensor has broad applicability in fault diagnosis and safety monitoring of high-end equipment such as automobile detection, industrial equipment, and oil drilling platforms.

6.
Front Pharmacol ; 15: 1417576, 2024.
Article in English | MEDLINE | ID: mdl-38989138

ABSTRACT

Organoids are in vitro 3D models that maintain their own tissue structure and function. They largely overcome the limitations of traditional tumor models and have become a powerful research tool in the field of oncology in recent years. Gynecological malignancies are major diseases that seriously threaten the life and health of women and urgently require the establishment of models with a high degree of similarity to human tumors for clinical studies to formulate individualized treatments. Currently, organoids are widely studied in exploring the mechanisms of gynecological tumor development as a means of drug screening and individualized medicine. Ovarian, endometrial, and cervical cancers as common gynecological malignancies have high morbidity and mortality rates among other gynecological tumors. Therefore, this study reviews the application of modelling, drug efficacy assessment, and drug response prediction for ovarian, endometrial, and cervical cancers, thereby clarifying the mechanisms of tumorigenesis and development, and providing precise treatment options for gynecological oncology patients.

7.
World J Gastrointest Oncol ; 16(7): 3308-3320, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39072161

ABSTRACT

BACKGROUND: Combination therapy has emerged as the focus of research for unresectable hepatocellular carcinoma (HCC). In recent years, several studies have explored the clinical efficacy and safety of the combination therapies of transarterial chemoembolization (TACE) with tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs). AIM: To conduct an updated meta-analysis verifying the clinical benefits and adverse effects of the triple combination therapy for unresectable HCC. METHODS: All eligible cohort, non-randomized controlled, and randomized controlled trial studies from the PubMed, Web of Science, Embase, Cochrane Library, and MedLine databases up to March 20, 2024 were screened for the present meta-analysis. The study endpoints included complete response (CR), objective response rate (ORR), disease control rate (DCR), overall survival (OS), progression-free survival (PFS), and adverse events (AEs). Stata 16/18 software was used for this meta-analysis, and a P value of <0.05 was considered statistically significant. RESULTS: A total of 29 studies with 1754 patients were included. Among the patients who received the TACE therapy with TKIs and ICIs, the tumor response results revealed a pooled CR, ORR, and DCR of 14% [95%CI (0.11-0.18)], 61% [95%CI (0.55-0.66)], and 85% [95%CI (0.83-0.87)], respectively. In terms of the survival outcomes, the pooled median PFS and OS were 10.25 months [95%CI (9.31-11.18)] and 20.47 months [95%CI (18.98-21.97)], respectively. The pooled prevalence of all-grade AEs during the triple treatment was 90% [95%CI (0.84-0.94)] and that of grade ≥ 3 AEs was 32% [95%CI (0.24-0.42)]. CONCLUSION: The combination therapy of TACE, TKIs, and ICIs exhibits great clinical benefits for unresectable HCC in terms of tumor responses and survival outcomes without increasing the risk of severe AEs.

8.
FASEB J ; 38(13): e23769, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38958951

ABSTRACT

Renal ischemia-reperfusion injury (IRI) is an integral process in renal transplantation, which results in compromised graft survival. Macrophages play an important role in both the early inflammatory period and late fibrotic period in response to IRI. In this study, we investigated whether scutellarin (SCU) could protect against renal IRI by regulating macrophage polarization. Mice were given SCU (5-50 mg/kg) by gavage 1 h earlier, followed by a unilateral renal IRI. Renal function and pathological injury were assessed 24 h after reperfusion. The results showed that administration of 50 mg/kg SCU significantly improved renal function and renal pathology in IRI mice. In addition, SCU alleviated IRI-induced apoptosis. Meanwhile, it reduced macrophage infiltration and inhibited pro-inflammatory macrophage polarization. Moreover, in RAW 264.7 cells and primary bone marrow-derived macrophages (BMDMs) exposed to SCU, we found that 150 µM SCU inhibited these cells to polarize to an inflammatory phenotype induced by lipopolysaccharide (LPS) and interferon-γ (IFN-γ). However, SCU has no influence on anti-inflammatory macrophage polarization in vivo and in vitro induced by in interleukin-4 (IL-4). Finally, we explored the effect of SCU on the activation of the mitogen-activated protein kinase (MAPK) pathway both in vivo and in vitro. We found that SCU suppressed the activation of the MAPK pathway, including the extracellular signal-regulated kinase (ERK), Jun N-terminal kinase (JNK), and p38. Our results demonstrated that SCU protects the kidney against IRI by inhibiting macrophage infiltration and polarization toward pro-inflammatory phenotype via the MAPK pathway, suggesting that SCU may be therapeutically important in treatment of IRI.


Subject(s)
Apigenin , Glucuronates , MAP Kinase Signaling System , Macrophages , Reperfusion Injury , Animals , Male , Mice , Apigenin/pharmacology , Apoptosis/drug effects , Glucuronates/pharmacology , Glucuronates/therapeutic use , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/prevention & control , Inflammation/pathology , Kidney/metabolism , Kidney/drug effects , Kidney/pathology , Macrophages/drug effects , Macrophages/metabolism , MAP Kinase Signaling System/drug effects , Mice, Inbred C57BL , RAW 264.7 Cells , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism
9.
Protein Expr Purif ; 223: 106551, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38997076

ABSTRACT

Hyaluronidase, an enzyme that degrades hyaluronic acid (HA), is utilized in clinical settings to facilitate drug diffusion, manage extravasation, and address injection-related complications linked to HA-based fillers. In this study, a novel hyaluronate lyase EsHyl8 was cloned, expressed, and characterized from Escherichia sp. A99 of human intestinal origin. This lyase belongs to polysaccharide lyase (PL) family 8, and showed specific activity towards HA. EsHyl8 exhibited optimal degradation at 40 °C and pH 6.0. EsHyl8 exhibited a high activity of 376.32 U/mg among hyaluronidases of human gut microorganisms. EsHyl8 was stable at 37 °C and remained about 70 % of activity after incubation at 37 °C for 24 h, demonstrating excellent thermostability. The activity of EsHyl8 was inhibited by Zn2+, Cu2+, Fe3+, and SDS. EsHyl8 was an endo-type enzyme whose end-product was unsaturated disaccharide. This study enhances our understanding of hyaluronidases from human gut microorganisms.


Subject(s)
Cloning, Molecular , Polysaccharide-Lyases , Polysaccharide-Lyases/genetics , Polysaccharide-Lyases/chemistry , Polysaccharide-Lyases/isolation & purification , Polysaccharide-Lyases/metabolism , Humans , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/isolation & purification , Escherichia/genetics , Escherichia/enzymology , Hyaluronic Acid/chemistry , Hyaluronic Acid/metabolism , Enzyme Stability , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Hydrogen-Ion Concentration , Substrate Specificity
10.
Clin Exp Med ; 24(1): 129, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884870

ABSTRACT

Chronic inflammation is pivotal in the pathogenesis of hepatocellular carcinoma (HCC). Histamine is a biologically active substance that amplifies the inflammatory and immune response and serves as a neurotransmitter. However, knowledge of histamine's role in HCC and its effects on immunotherapy remains lacking. We focused on histamine-related genes to investigate their potential role in HCC. The RNA-seq data and clinical information regarding HCC were obtained from The Cancer Genome Atlas (TCGA). After identifying the differentially expressed genes, we constructed a signature using the univariate Cox proportional hazard regression and least absolute shrinkage and selection operator (LASSO) analyses. The signature's predictive performance was evaluated using a receiver operating characteristic curve (ROC) analysis. Furthermore, drug sensitivity, immunotherapy effects, and enrichment analyses were conducted. Histamine-related gene expression in HCC was confirmed using quantitative real-time polymerase chain reaction (qRT-PCR). A histamine-related gene prognostic signature (HRGPS) was developed in TCGA. Time-dependent ROC and Kaplan-Meier survival analyses demonstrated the signature's strong predictive power. Importantly, patients in high-risk groups exhibited a higher frequency of TP53 mutations, elevated immune checkpoint-related gene expression, and increased infiltration of immunosuppressive cells-indicating a potentially favorable response to immunotherapy. In addition, drug sensitivity analysis revealed that the signature could effectively predict chemotherapy efficacy and sensitivity. qRT-PCR results validated histamine-related gene overexpression in HCC. Our findings demonstrate that inhibiting histamine-related genes and signaling pathways can impact the therapeutic effect of anti-PD-1/PD-L1. The precise predictive ability of our signature in determining the response to different therapeutic options highlights its potential clinical significance.


Subject(s)
Carcinoma, Hepatocellular , Histamine , Immunotherapy , Liver Neoplasms , Tumor Microenvironment , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/drug therapy , Histamine/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Liver Neoplasms/pathology , Liver Neoplasms/immunology , Liver Neoplasms/drug therapy , Tumor Microenvironment/immunology , Immunotherapy/methods , Male , Gene Expression Regulation, Neoplastic , Prognosis , Female , Middle Aged , Kaplan-Meier Estimate , Gene Expression Profiling , ROC Curve
11.
J Hazard Mater ; 474: 134787, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38823101

ABSTRACT

The developmental toxicity effects of neonicotinoid pesticides such as clothianidin have not been fully explored in agricultural applications. This is particularly noteworthy because such pesticides significantly impact the survival rates of invertebrates, with arthropod larvae being particularly vulnerable. This study aimed to address this research gap by specifically investigating the toxicological effects of clothianidin on the developmental stages of the larvae of the economically important aquaculture species Penaeus vannamei. In these experiments, shrimp eggs were exposed to seawater containing different concentrations of clothianidin beginning at N1, and each phase was observed and analyzed to determine its toxic impact on larval development. These results revealed that clothianidin induces an increase in deformity rates and triggers abnormal cell apoptosis. It also significantly reduced survival rates and markedly decreased body length and heart rate in the later stages of larval development (P3). Transcriptomic analysis revealed disruptions in larval DNA integrity, protein synthesis, and signal transduction caused by clothianidin. To survive prolonged exposure, larvae may attempt to maintain their viability by repairing cell structures and enhancing signal transduction mechanisms. This study offers the first empirical evidence of the toxicity of clothianidin to arthropod larvae, underscoring the impact of environmental pollution on aquatic health.


Subject(s)
Guanidines , Insecticides , Larva , Neonicotinoids , Penaeidae , Thiazoles , Animals , Larva/drug effects , Neonicotinoids/toxicity , Guanidines/toxicity , Thiazoles/toxicity , Insecticides/toxicity , Penaeidae/drug effects , Penaeidae/growth & development , Water Pollutants, Chemical/toxicity , Apoptosis/drug effects
12.
Eur J Pharmacol ; 978: 176775, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38925288

ABSTRACT

The development of multitarget opioid drugs has emerged as an attractive approach for innovative pain management with reduced side effects. In the present study, a novel hybrid peptide BNT12 containing the opioid and neurotensin (NT)-like fragments was synthesized and pharmacologically characterized. In acute radiant heat paw withdrawal test, intracerebroventricular (i.c.v.) administration of BNT12 produced potent antinociception in mice. The central antinociceptive activity of BNT12 was mainly mediated by µ-, δ-opioid receptor, neurotensin receptor type 1 (NTSR1) and 2 (NTSR2), supporting a multifunctional agonism of BNT12 in the functional assays. BNT12 also exhibited significant antinociceptive effects in spared nerve injury (SNI)-neuropathic pain, complete Freund's adjuvant (CFA)-induced inflammatory pain, acetic acid-induced visceral and formalin-induced pain after i.c.v. administration. Furthermore, BNT12 exhibited substantial reduction of acute antinociceptive tolerance, shifted the dose-response curve to the right by only 1.3-fold. It is noteworthy that BNT12 showed insignificant chronic antinociceptive tolerance at the supraspinal level. In addition, BNT12 exhibited reduced or no opioid-like side effects on conditioned place preference (CPP) response, naloxone-precipitated withdrawal response, acute hyperlocomotion, motor coordination, gastrointestinal transit, and cardiovascular responses. The present investigation demonstrated that the novel hybrid peptide BNT12 might serve as a promising analgesic candidate with limited opioid-like side effects.


Subject(s)
Neurotensin , Receptors, Neurotensin , Animals , Male , Mice , Neurotensin/analogs & derivatives , Neurotensin/pharmacology , Neurotensin/chemistry , Receptors, Neurotensin/metabolism , Receptors, Neurotensin/agonists , Analgesics/pharmacology , Analgesics/chemistry , Analgesics/administration & dosage , Analgesics, Opioid/pharmacology , Analgesics, Opioid/administration & dosage , Drug Tolerance , Pain/drug therapy
13.
Int J Mol Sci ; 25(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38891987

ABSTRACT

Alginate lyases cleave the 1,4-glycosidic bond of alginate by eliminating sugar molecules from its bond. While earlier reported alginate lyases were primarily single catalytic domains, research on multi-module alginate lyases has been lfiguimited. This study identified VsAly7A, a multi-module alginate lyase present in Vibrio sp. QY108, comprising a "Pro-Asp-Thr(PDT)" fragment and two PL-7 catalytic domains (CD I and CD II). The "PDT" fragment enhances the soluble expression level and increases the thermostability and binding affinity to the substrate. Moreover, CD I exhibited greater catalytic efficiency than CD II. The incorporation of PDT-CD I resulted in an increase in the optimal temperature of VsAly7A, whereas CD II displayed a preference for polyG degradation. The multi-domain structure of VsAly7A provides a new idea for the rational design of alginate lyase, whilst the "PDT" fragment may serve as a fusion tag in the soluble expression of recombinant proteins.


Subject(s)
Alginates , Enzyme Stability , Polysaccharide-Lyases , Vibrio , Polysaccharide-Lyases/metabolism , Polysaccharide-Lyases/genetics , Polysaccharide-Lyases/chemistry , Vibrio/enzymology , Vibrio/genetics , Alginates/metabolism , Alginates/chemistry , Protein Binding , Catalytic Domain , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Solubility , Amino Acid Sequence , Temperature , Recombinant Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
14.
Opt Express ; 32(11): 19779-19791, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38859104

ABSTRACT

Derived from infrared pyroelectric detection, typical terahertz (THz) pyroelectric detectors have low sensitivity at low-frequency THz bands. Based on the high-efficiency absorption of the metamaterial perfect absorber (MPA), a novel split ring hole metamaterial-enhanced pyroelectric detector is proposed to achieve efficient multi-narrowband THz detection. Using high frequency simulation software (HFSS), the dimensional parameters including ring radius, ring width, connection beam width, array period, and thickness, are optimized to enhance efficient multi-narrowband absorption. The as-optimized metamaterial-enhanced detectors are fabricated via micro-nano manufacturing technology. The voltage responsiveness and noise equivalent power of the metamaterial-enhanced detector are tested by THz focused optical path and compared with those of the typical pyroelectric detector and the simulated MPA absorptivity. The results indicate that the metamaterial-enhanced detector has a multi-narrowband detection capability at 0.245 THz, 0.295 THz, and 0.38 THz, which is close to the simulated MPA absorptivity. Compared to the typical pyroelectric detector, the split ring hole metamaterial-enhanced detector can simultaneously achieve thermal absorption, thermal conduction, and pyroelectricity in the same MPA structure, providing faster response speed above 100 Hz chopper frequency and two times higher detection sensitivity at multi-narrowband THz frequencies. This research can be used for THz sensing, absorption filtering, biological macromolecule detection, and other applications.

15.
J Int Med Res ; 52(6): 3000605241255810, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38886867

ABSTRACT

Pelvic masses frequently originate from the pelvic cavity and are often associated with uterine, ovarian, or intestinal disorders. This report describes the case of a patient with a pelvic mass diagnosed as a retroperitoneal dermoid cyst at our hospital. We analyzed this case and conducted a literature review, to mitigate the risk of misdiagnosis and enhance the treatment of retroperitoneal masses.


Subject(s)
Adenomyoma , Dermoid Cyst , Retroperitoneal Neoplasms , Uterine Neoplasms , Humans , Female , Dermoid Cyst/surgery , Dermoid Cyst/complications , Dermoid Cyst/diagnosis , Dermoid Cyst/pathology , Retroperitoneal Neoplasms/pathology , Retroperitoneal Neoplasms/complications , Retroperitoneal Neoplasms/diagnostic imaging , Retroperitoneal Neoplasms/diagnosis , Retroperitoneal Neoplasms/surgery , Uterine Neoplasms/pathology , Uterine Neoplasms/complications , Uterine Neoplasms/diagnosis , Uterine Neoplasms/surgery , Uterine Neoplasms/diagnostic imaging , Adenomyoma/pathology , Adenomyoma/surgery , Adenomyoma/complications , Adenomyoma/diagnosis , Adenomyoma/diagnostic imaging , Tomography, X-Ray Computed , Adult
17.
BMC Plant Biol ; 24(1): 446, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38778268

ABSTRACT

Salvia miltiorrhiza is commonly used as a Chinese herbal medicine to treat different cardiovascular and cerebrovascular illnesses due to its active ingredients. Environmental conditions, especially drought stress, can affect the yield and quality of S. miltiorrhiza. However, moderate drought stress could improve the quality of S. miltiorrhiza without significantly reducing the yield, and the mechanism of this initial drought resistance is still unclear. In our study, transcriptome and metabolome analyses of S. miltiorrhiza under different drought treatment groups (CK, A, B, and C groups) were conducted to reveal the basis for its drought tolerance. We discovered that the leaves of S. miltiorrhiza under different drought treatment groups had no obvious shrinkage, and the malondialdehyde (MDA) contents as well as superoxide dismutase (SOD) and peroxidase (POD) activities dramatically increased, indicating that our drought treatment methods were moderate, and the leaves of S. miltiorrhiza began to initiate drought resistance. The morphology of root tissue had no significant change under different drought treatment groups, and the contents of four tanshinones significantly enhanced. In all, 5213, 6611, and 5241 differentially expressed genes (DEGs) were shared in the A, B, and C groups compared with the CK group, respectively. The results of KEGG and co-expression analysis showed that the DEGs involved in plant-pathogen interactions, the MAPK signaling pathway, phenylpropanoid biosynthesis, flavonoid biosynthesis, and plant hormone signal transduction responded to drought stress and were strongly correlated with tanshinone biosynthesis. Furthermore, the results of metabolism analysis indicated that 67, 72, and 92 differentially accumulated metabolites (DAMs), including fumarate, ferulic acid, xanthohumol, and phytocassanes, which were primarily involved in phenylpropanoid biosynthesis, flavonoid biosynthesis, and diterpenoid biosynthesis pathways, were detected in these groups. These discoveries provide valuable information on the molecular mechanisms by which S. miltiorrhiza responds to drought stress and will facilitate the development of drought-resistant and high-quality S. miltiorrhiza production.


Subject(s)
Droughts , Metabolome , Salvia miltiorrhiza , Transcriptome , Salvia miltiorrhiza/genetics , Salvia miltiorrhiza/metabolism , Salvia miltiorrhiza/physiology , Gene Expression Profiling , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/physiology
18.
Adv Healthc Mater ; : e2400533, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722018

ABSTRACT

Periodontitis, a prevalent inflammatory condition in the oral cavity, is closely associated with oxidative stress-induced tissue damage mediated by excessive reactive oxygen species (ROS) production. The jaw vascular unit (JVU), encompassing both vascular and lymphatic vessels, plays a crucial role in maintaining tissue fluid homeostasis and contributes to the pathological process in inflammatory diseases of the jaw. This study presents a novel approach for treating periodontitis through the development of an injectable thermosensitive gel (CH-BPNs-NBP). The gel formulation incorporates black phosphorus nanosheets (BPNs), which are notable for their ROS-scavenging properties, and dl-3-n-butylphthalide (NBP), a vasodilator that promotes lymphatic vessel function within the JVU. These results demonstrate that the designed thermosensitive gel serve as a controlled release system, delivering BPNs and NBP to the site of inflammation. CH-BPNs-NBP not only protects macrophages and human lymphatic endothelial cells from ROS attack but also promotes M2 polarization and lymphatic function. In in vivo studies, this work observes a significant reduction in inflammation and tissue damage, accompanied by a notable promotion of alveolar bone regeneration. This research introduces a promising therapeutic strategy for periodontitis, leveraging the unique properties of BPNs and NBP within an injectable thermosensitive gel.

19.
Psychol Med ; : 1-11, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38720515

ABSTRACT

BACKGROUND: There is a clear demand for innovative therapeutics for bipolar disorder (BD). METHODS: We integrated the largest BD genome-wide association study (GWAS) dataset (NCase = 41 917, NControl = 371 549) with protein quantitative trait loci from brain, cerebrospinal fluid, and plasma. Using a range of integrative analyses, including Mendelian randomization (MR), Steiger filter analysis, Bayesian colocalization, and phenome-wide MR analysis, we prioritized novel drug targets for BD. Additionally, we incorporated data from the UK Biobank (NCase = 1064, NControl = 365 476) and the FinnGen study (NCase = 7006, NControl = 329 192) for robust biological validation. RESULTS: Through MR analysis, we found that in the brain, downregulation of DNM3, MCTP1, ABCB8 and elevation of DFNA5 and PDF were risk factors for BD. In cerebrospinal fluid, increased BD risk was associated with increased levels of FRZB, AGRP, and IL36A and decreased CTSF and LRP8. Plasma analysis revealed that decreased LMAN2L, CX3CL1, PI3, NCAM1, and TIMP4 correlated with increased BD risk, but ITIH1 did not. All these proteins passed Steiger filtering, and Bayesian colocalization confirmed that 12 proteins were colocalized with BD. Phenome-wide MR analysis revealed no significant side effects for potential drug targets, except for LRP8. External validation further underscored the concordance between the primary and validation cohorts, confirming MCTP1, DNM3, PDF, CTSF, AGRP, FRZB, LMAN2L, NCAM1, and TIMP4 are intriguing targets for BD. CONCLUSIONS: Our study identified druggable proteins for BD, including MCTP1, DNM3, and PDF in the brain; CTSF, AGRP, and FRZB in cerebrospinal fluid; and LMAN2L, NCAM1, and TIMP4 in plasma, delineating promising avenues to development of novel therapies.

20.
Front Immunol ; 15: 1393852, 2024.
Article in English | MEDLINE | ID: mdl-38711526

ABSTRACT

Different eukaryotic cell organelles (e.g., mitochondria, endoplasmic reticulum, lysosome) are involved in various cancer processes, by dominating specific cellular activities. Organelles cooperate, such as through contact points, in complex biological activities that help the cell regulate energy metabolism, signal transduction, and membrane dynamics, which influence survival process. Herein, we review the current studies of mechanisms by which mitochondria, endoplasmic reticulum, and lysosome are related to the three major malignant gynecological cancers, and their possible therapeutic interventions and drug targets. We also discuss the similarities and differences of independent organelle and organelle-organelle interactions, and their applications to the respective gynecological cancers; mitochondrial dynamics and energy metabolism, endoplasmic reticulum dysfunction, lysosomal regulation and autophagy, organelle interactions, and organelle regulatory mechanisms of cell death play crucial roles in cancer tumorigenesis, progression, and response to therapy. Finally, we discuss the value of organelle research, its current problems, and its future directions.


Subject(s)
Genital Neoplasms, Female , Mitochondria , Organelles , Humans , Female , Genital Neoplasms, Female/pathology , Genital Neoplasms, Female/metabolism , Mitochondria/metabolism , Mitochondria/pathology , Organelles/metabolism , Cell Survival , Animals , Lysosomes/metabolism , Endoplasmic Reticulum/metabolism , Autophagy , Energy Metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL