Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Environ Res ; 257: 119326, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38849002

ABSTRACT

With the burgeoning growth of the livestock and aquaculture industries, antibiotic residues in treated wastewater have become a serious ecological threat. Traditional biological wastewater treatment technologies-while effective for removing conventional pollutants, such as organic carbon, ammonia and phosphate-struggle to eliminate emerging contaminants, notably antibiotics. Recently, the use of microalgae has emerged as a sustainable and promising approach for the removal of antibiotics due to their non-target status, rapid growth and carbon recovery capabilities. This review aims to analyse the current state of antibiotic removal from wastewater using algae-bacteria symbiosis systems and provide valuable recommendations for the development of livestock/aquaculture wastewater treatment technologies. It (1) summarises the biological removal mechanisms of typical antibiotics, including bioadsorption, bioaccumulation, biodegradation and co-metabolism; (2) discusses the roles of intracellular regulation, involving extracellular polymeric substances, pigments, antioxidant enzyme systems, signalling molecules and metabolic pathways; (3) analyses the role of treatment facilities in facilitating algae-bacteria symbiosis, such as sequencing batch reactors, stabilisation ponds, membrane bioreactors and bioelectrochemical systems; and (4) provides insights into bottlenecks and potential solutions. This review offers valuable information on the mechanisms and strategies involved in the removal of antibiotics from livestock/aquaculture wastewater through the symbiosis of microalgae and bacteria.

2.
Water Res ; 258: 121778, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38795549

ABSTRACT

Biotechnology for wastewater treatment is mainstream and effective depending upon microbial redox reactions to eliminate diverse contaminants and ensure aquatic ecological health. However, refractory organic nitrogen compounds (RONCs, e.g., nitro-, azo-, amide-, and N-heterocyclic compounds) with complex structures and high toxicity inhibit microbial metabolic activity and limit the transformation of organic nitrogen to inorganic nitrogen. This will eventually result in non-compliance with nitrogen discharge standards. Numerous efforts suggested that applying exogenous electron donors or acceptors, such as solid electrodes (electrostimulation) and limited oxygen (micro-aeration), could potentially regulate microbial redox reactions and catabolic pathways, and facilitate the biotransformation of RONCs. This review provides comprehensive insights into the microbial regulation mechanisms and applications of electrostimulation and micro-aeration strategies to accelerate the biotransformation of RONCs to organic amine (amination) and inorganic ammonia (ammonification), respectively. Furthermore, a promising approach involving in-situ hybrid anaerobic biological units, coupled with electrostimulation and micro-aeration, is proposed towards engineering applications. Finally, employing cutting-edge methods including multi-omics analysis, data science driven machine learning, technology-economic analysis, and life-cycle assessment would contribute to optimizing the process design and engineering implementation. This review offers a fundamental understanding and inspiration for novel research in the enhanced biotechnology towards RONCs elimination.


Subject(s)
Nitrogen , Oxidation-Reduction , Wastewater , Wastewater/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/metabolism
3.
Appl Microbiol Biotechnol ; 108(1): 120, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38212963

ABSTRACT

UV photolysis has been recommended as an alternative pretreatment method for the elimination of antibacterial activity of antibiotics against the indicator strain, but the pretreated antibiotic intermediates might not lose their potential to induce antibiotic resistance genes (ARGs) proliferation during subsequent biotreatment processes. The presence of florfenicol (FLO) in wastewater seriously inhibits the metabolic performance of anaerobic sludge microorganisms, especially the positive correlation between UV irradiation doses and ATP content, while it did not significantly affect the organics utilization ability and protein biosynthetic process of aerobic microorganisms. After sufficient UV pretreatment, the relative abundances of floR from genomic or plasmid DNA in subsequent aerobic and anaerobic biotreatment processes both decreased by two orders of magnitude, maintained at the level of the groups without FLO selective pressure. Meanwhile, the abundances of floR under anaerobic condition were always lower than that under aerobic condition, suggesting that anaerobic biotreatment systems might be more suitable for the effective control of target ARGs. The higher abundance of floR in plasmid DNA than in genome also indicated that the potential transmission risk of mobile ARGs should not be ignored. In addition, the relative abundance of intI1 was positively correlated with floR in its corresponding genomic or plasmid DNA (p < 0.05), which also increased the potential horizontal transfer risk of target ARGs. This study provides new insights into the effect of preferential UV photolysis as a pretreatment method for the enhancement of metabolic performance and source control of target ARGs in subsequent biotreatment processes. KEY POINTS: • Sufficient UV photolytic pretreatment efficiently controlled the abundance of floR • A synchronous decrease in abundance of intI1 reduced the risk of horizontal transfer • An appreciable abundance of floR in plasmid DNA was a potential source of total ARGs.


Subject(s)
Genes, Bacterial , Thiamphenicol/analogs & derivatives , Wastewater , Anti-Bacterial Agents/pharmacology , DNA
4.
Analyst ; 148(23): 5896-5904, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37847494

ABSTRACT

Based on surface biomolecular imprinting technology, a rotary microfluidic electrochemical paper-based chip (MIP-ePADs) was proposed for sensitive and selective detection of human interleukin 6 (IL-6) and procalcitonin (PCT). Compared with the traditional method, the sample can be added directly on the MIP-ePAD by rotating the working electrode, which avoids the loss of the liquid to be tested and greatly simplifies the process of electropolymerization imprinting and template elution. Our experimental results show that linear concentration ranges of IL-6 and PCT in the electrochemical molecularly imprinted microfluidic paper-based chip ranged from 0.01 to 5 ng mL-1, with their detection limits being 3.5 and 2.1 pg mL-1, respectively. For the detection of actual serum samples, there was no significant difference between the results of MIP-ePADs and the traditional electrochemiluminescence method used in hospitals, indicating that the paper-based chip can be used for stable and accurate analysis and detection. The chip greatly reduces the cost of clinical trials due to its advantages of easy preparation and low cost. The chip can be used for the analysis of non-antibody inflammation markers and can be widely used in home and hospital treatment detection. This method will not only play an important role in rapid detection, but also provide new ideas for the improvement of rapid detection technology.


Subject(s)
Molecular Imprinting , Procalcitonin , Humans , Interleukin-6 , Microfluidics , Molecular Imprinting/methods , Electrodes , Electrochemical Techniques/methods , Limit of Detection
5.
J Hazard Mater ; 460: 132471, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37683347

ABSTRACT

Pyrazolones, widely used as analgesic and anti-inflammatory pharmaceuticals, have become a significant concern because of their persistence and widespread presence in engineered (e.g., wastewater treatment plants) and natural environments. Thus, the urgent task is to ensure the effective and cost-efficient removal of pyrazolones. Advanced oxidation processes are the most commonly used removal method. Furthermore, the biodegradation of pyrazolones has been exploited using microbial communities or pure strains; however, screening for efficient degrading bacteria and clarifying the biodegradation mechanisms required further research. In this critical review, we overview the environmental occurrence of pyrazolones, their potential ecological health risks, and their corresponding removal techniques (e.g., O3 oxidation, photocatalysis, and Fenton-like process). We also emphasize the prospects for the risk and contamination control of pyrazolones in various environments using physicochemical-biochemical coupling technology. Collectively, the environmental occurrence of pyrazolones poses significant public health concerns, necessitating heightened attention and the implementation of effective methods to minimize their environmental risks.


Subject(s)
Microbiota , Pyrazolones , Biodegradation, Environmental , Drug Contamination , Public Health
6.
J Hazard Mater ; 457: 131807, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37307730

ABSTRACT

Woolen textile industry produces enormous wastewater (WTIW) with high pollution loads, and needs to be treated by wastewater treatment stations (WWTS) before centralized treatment. However, WTIW effluent still contains many biorefractory and toxic substances; thus, comprehensive understandings of dissolved organic matter (DOM) of WTIW and its transformation are essential. In this study, total quantity indices, size exclusion chromatography, spectral methods, and Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) were used for comprehensively characterizing DOM and its transformation during full-scale treatments, including influent, regulation pool (RP), flotation pool (FP), up-flow anaerobic sludge bed (UA), anaerobic/oxic (AO) and effluent. DOM in influent featured a large molecular weight (5-17 kDa), toxicity (0.201 HgCl2 mg/L), and a protein content of 338 mg C/L. FP largely removed 5-17 kDa DOM with the formation of 0.45-5 kDa DOM. UA and AO removed 698 and 2042 chemicals, respectively, which were primarily saturated components (H/C > 1.5); however, both UA and AO contributed to the formation of 741 and 1378 stable chemicals, respectively. Good correlations were found among water quality indices and spectral/molecular indices. Our study reveals the molecular composition and transformation of WTIW DOM during treatments and encourages the optimization of the employed processes in WWTS.

7.
J Hazard Mater ; 452: 131344, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37027914

ABSTRACT

Machine learning (ML) methods provide a new opportunity to build quantitative structure-activity relationship (QSAR) models for predicting chemicals' toxicity based on large toxicity data sets, but they are limited in insufficient model robustness due to poor data set quality for chemicals with certain structures. To address this issue and improve model robustness, we built a large data set on rat oral acute toxicity for thousands of chemicals, then used ML to filter chemicals favorable for regression models (CFRM). In comparison to chemicals not favorable for regression models (CNRM), CFRM accounted for 67% of chemicals in the original data set, and had a higher structural similarity and a smaller toxicity distribution in 2-4 log10 (mg/kg). The performance of established regression models for CFRM was greatly improved, with root-mean-square deviations (RMSE) in the range of 0.45-0.48 log10 (mg/kg). Classification models were built for CNRM using all chemicals in the original data set, and the area under receiver operating characteristic (AUROC) reached 0.75-0.76. The proposed strategy was successfully applied to a mouse oral acute data set, yielding RMSE and AUROC in the range of 0.36-0.38 log10 (mg/kg) and 0.79, respectively.


Subject(s)
Machine Learning , Quantitative Structure-Activity Relationship , Mice , Rats , Animals , Models, Chemical
8.
Sci Total Environ ; 882: 163174, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37028676

ABSTRACT

Leather wastewater (LW) effluent is characterized by complex organic matter, high salinity, and poor biodegradability. To meet the discharge standards, LW effluent is often mixed with municipal wastewater (MW) before being treated at a leather industrial park wastewater treatment plant (LIPWWTP). However, whether this method efficiently removes the dissolved organic matter (DOM) from LW effluent (LWDOM) remains debatable. In this study, the transformation of DOM during full-scale treatment was revealed using spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry. LWDOM exhibited higher aromaticity and lower molecular weight than DOM in MW (MWDOM). The DOM properties in mixed wastewater (MixW) were similar to those in LWDOM and MWDOM. The MixW was treated using a flocculation/primary sedimentation tank (FL1/PST), anoxic/oxic (A/O) process, secondary sedimentation tank (SST), flocculation/sedimentation tank, denitrification filter (FL2/ST-DNF), and an ozonation contact reactor (O3). The FL1/PST unit preferentially removed the peptide-like compounds. The A/O-SST units had the highest removal efficiencies for dissolved organic carbon (DOC) (61.34 %) and soluble chemical oxygen demand (SCOD) (52.2 %). The FL2/ST-DNF treatment removed the lignin-like compounds. The final treatment showed poor DOM mineralization efficiency. The correlation between water quality indices, spectral indices, and molecular-level parameters indicated that lignin-like compounds were strongly correlated with spectral indices and CHOS compounds considerably contributed to the SCOD and DOC. Although the effluent SCOD met the discharge standard, some refractory DOM from LW remained in the effluent. This study illustrates the composition and transformation of DOM and provides theoretical guidance for improving the current treatment processes.

9.
Water Res ; 235: 119876, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36931185

ABSTRACT

To avoid the inhibition of microbial activity and the emergence of bacterial resistance, effective abiotic pretreatment methods to eliminate the antibacterial activity of target antibiotics before the biotreatment system for antibiotic-containing wastewater are necessary. In this study, the VUV/UV/sulfite system was developed as a pretreatment technique for the source elimination of florfenicol (FLO) resistance risk. Compared with the VUV/UV/persulfate and sole VUV photolysis, the VUV/UV/sulfite system had the highest decomposition rate (0.33 min‒1) and the highest defluorination (83.0%), resulting in the efficient elimination of FLO antibacterial activity with less than 2.0% mineralization, which would effectively retain the carbon sources for the sludge microorganisms in the subsequent biotreatment process. Furthermore, H• was confirmed to play a more important role in the elimination of FLO antibacterial activity by controlling the environmental conditions for the formation and transformation of reactive species and adding their scavengers. Based on the theoretical calculation and proposed photolytic intermediates, the elimination of FLO antibacterial activity was achieved by dechlorination, defluorination and removal of sulfomethyl groups. When the pretreated FLO-containing wastewater entered the biological treatment unit, the abundance of associated antibiotic resistance genes (ARGs) and the relative abundance of integrons were efficiently prevented by approximately 55.4% and 22.9%, respectively. These results demonstrated that the VUV/UV/sulfite system could be adopted as a promising pretreatment option for the source elimination of FLO resistance risk by target decomposition of its responsible structures before the subsequent biotreatment process.


Subject(s)
Water Pollutants, Chemical , Water Purification , Wastewater , Water , Water Pollutants, Chemical/chemistry , Ultraviolet Rays , Anti-Bacterial Agents/chemistry , Oxidation-Reduction , Water Purification/methods
10.
Sensors (Basel) ; 23(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36991805

ABSTRACT

Traces of mercury ions in environmental water can harm humans and animals. Paper-based visual detection methods have been widely developed for the rapid detection of mercury ions; however, existing methods are not sensitive enough to be used in real environments. Here, we developed a novel, simple and effective visual fluorescent sensing paper-based chip for the ultrasensitive detection of mercury ions in environmental water. CdTe-quantum-dots-modified silica nanospheres were firmly absorbed by and anchored to the fiber interspaces on the paper's surface to effectively avoid the unevenness caused by liquid evaporation. The fluorescence of quantum dots emitted at 525 nm can be selectively and efficiently quenched with mercury ions, and the ultrasensitive visual fluorescence sensing results attained using this principle can be captured using a smartphone camera. This method has a detection limit of 2.83 µg/L and a fast response time (90 s). We successfully achieved the trace spiking detection of seawater (from three regions), lake water, river water and tap water with recoveries in the range of 96.8-105.4% using this method. This method is effective, low-cost, user-friendly and has good prospects for commercial application. Additionally, the work is expected to be utilized in the automated big data collection of large numbers of environmental samples.

11.
Environ Res ; 223: 115409, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36746203

ABSTRACT

An important way to promote the environmental industry's goal of carbon reduction is to promote the recycling of resources. Membrane separation technology has unique advantages in resource recovery and advanced treatment of industrial wastewater. However, the great promise of traditional organic membrane is hampered by challenges associated with organic solvent tolerance, lack of oxidation resistance, and serious membrane fouling control. Moreover, the high concentrations of organic matter and inorganic salts in the membrane filtration concentrate also hinder the wider application of the membrane separation technology. The emerging cost-effective graphene oxide (GO)-based membrane with excellent resistance to organic solvents and oxidants, more hydrophilicity, lower membrane fouling, better separation performance has been expected to contribute more in industrial wastewater treatment. Herein, we provide comprehensive insights into the preparation and characteristic of GO membranes, as well as current research status and problems related to its future application in industrial wastewater treatment. Finally, concluding remarks and future perspectives have been deduced and recommended for the GO membrane separation technology application for industrial wastewater treatment, which leads to realizing sustainable wastewater recycling and a nearly "zero discharge" water treatment process.


Subject(s)
Graphite , Water Purification , Wastewater , Membranes, Artificial
12.
Environ Sci Technol ; 57(47): 18668-18679, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-36730709

ABSTRACT

Hydroxyl radical production via catalytic activation of HOCl is a new type of Fenton-like process. However, metal-chlorocomplex formation under high chloride conditions could deactivate the catalyst and reduce the process efficiency. Herein, in situ electrogenerated HOCl was activated to •OH via a metal-free, B/N-codoped carbon nanofiber cathode for the first time to degrade contaminant under high chloride condition. The results show 98% degradation of rhodamine B (RhB) within 120 min (k = 0.036 min-1) under sulfate conditions, while complete degradation (k = 0.188 min-1) was obtained in only 30 min under chloride conditions. An enhanced degradation mechanism consists of an Adsorb & Shuttle process, wherein adsorption concentrates the pollutants at the cathode surface and they are subsequently oxidized by the large amount of •OH produced via activation of HOCl and H2O2 at the cathode. Density functional theory calculations verify the pyridinic N as the active site for the activation of HOCl and H2O2. The process efficiency was also evaluated by treating tetracycline and bisphenol A as well as high chloride-containing real secondary effluents from a pesticide manufacturing plant. High yields of •OH and HOCl allow continuous regeneration of the cathode for several cycles, limiting its fast deactivation, which is promising for real application.


Subject(s)
Hydroxyl Radical , Water Pollutants, Chemical , Hydroxyl Radical/chemistry , Chlorides , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Anti-Bacterial Agents , Water Pollutants, Chemical/analysis , Electrodes
13.
J Hazard Mater ; 441: 129926, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36099740

ABSTRACT

The high concentrations of salt and refractory toxic organics in industrial wastewater seriously restrict biological treatment efficiency and functional stability. However, how to construct a salt-tolerant biocatalytic community and realize the decarbonization coupled with detoxification toward green bio-enhanced treatment, has yet to be well elucidated. Here, acetoacetanilide (AAA), an important intermediate for many dyes and medicine synthesis, was used as the model amide pollutant to elucidate the directional enrichment of halotolerant degradative communities and the corresponding bacterial interaction mechanism. Combining microbial community composition and molecular ecological network analyses as well as the biodegradation efficiencies of AAA and its hydrolysis product aniline (AN) of pure strains, the core degradative bacteria were identified during the hypersaline AAA degradation process. A synthetic bacterial consortium composed of Paenarthrobacter, Rhizobium, Rhodococcus, Delftia and Nitratireductor was constructed based on the top-down strategy to treat AAA wastewater with different water quality characteristics. The synthetic halotolerant consortium showed promising treatment ability toward the simulated AAA wastewater (AAA 100-500 mg/L, 1-5% salinity) and actual AAA mother liquor. Additionally, the comprehensive toxicity of AAA mother liquor significantly reduced after biological treatment. This study provides a green biological approach for the treatment of hypersaline and high concentration of organics wastewater.


Subject(s)
Environmental Pollutants , Rhodococcus , Acetanilides , Biodegradation, Environmental , Coloring Agents , Wastewater
14.
ACS Omega ; 7(41): 36387-36402, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36278070

ABSTRACT

During the storage of underground water reservoirs in coal mines, water-rock interaction occurred between mine water and collapsed rocks, resulting in improved mine water quality, but the water-rock process and mechanism have not been clarified. In this study, six sets of simulated experiments were designed to investigate the water-rock interaction between two types of roof collapse rocks and different water samples in the Daliuta coal mine. The ion ratio method and multivariate statistics are used to reveal the process and mechanism of water-rock interaction during the experimental process from the perspective of input and output water chemical characteristics and rock properties, respectively. The results show that the ion concentration of the effluent water is controlled by water-rock interaction, and the water-rock process mainly involves the dissolution of halite, silicate, pyrite, calcite, dolomite, magnesia chlorite, and gypsum precipitation and is accompanied by ion exchange. Mineral dissolution and precipitation are the most important factors affecting the ion abundance in the effluent. There are differences in the reaction rate, degree of reaction, and dissolution process during the experimental process of fine sandstone and mudstone. Fine sandstone is more reactive than mudstone in terms of reaction rate and degree of reaction, and fine sandstone is dissolved from surface pores to inside and around, while mudstone is generated in new dissolved pores. We found that rock type, ion concentration in the input water, and rock reaction period influence the water-rock interaction during the experiment. The results provide a reference for clarifying the water-rock interaction during the storage of underground water reservoirs in coal mines and predicting the water quality of the effluent.

15.
Environ Res ; 214(Pt 3): 114086, 2022 11.
Article in English | MEDLINE | ID: mdl-35970377

ABSTRACT

Currently, the depletion of natural resources and contamination of the surrounding environment demand a paradigm shift to resource recycling and reuse. In this regard, phosphorus (P) is a model nutrient that possesses the negative traits of depletion (will be exhausted in the next 100 years) and environmental degradation (causes eutrophication and climate change), and this has prompted the scientific community to search for options to solve P-related problems. To date, P recovery in the form of struvite from wastewater is one viable solution suggested by many scholars. Struvite can be recovered either in the form of NH4-struvite (MgNH4PO4•6H2O) or K-struvite (MgKPO4•6H2O). From struvite, K (MgKPO4•6H2O) and N (MgNH4PO4•6H2O) are important nutrients for plant growth, but N is more abundant in the environment than K (the soil's most limited nutrient), which requires a systematic approach during P recovery. Although K-struvite recovery is a promising approach, information related to its crystallization is deficient. Here, we present the general concept of P recovery as struvite and details about K-struvite, such as the source of nutrients, factors (pH, molar ratio, supersaturation, temperature, and seeding), advantages (environmental, economic, and social), disadvantages (heavy metals, pathogenic organisms, and antibiotic resistance genes), and challenges (scale-up and acceptance). Overall, this study provides insights into state-of-the-art K-struvite recovery from wastewater as a potential slow-release fertilizer that can be used as a macronutrient (P-K-Mg) source for plants as commercial grade-fertilizers.


Subject(s)
Phosphorus , Wastewater , Fertilizers , Phosphates/chemistry , Phosphorus/chemistry , Struvite , Waste Disposal, Fluid , Wastewater/chemistry
16.
Sci Total Environ ; 849: 157844, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-35934035

ABSTRACT

The production and consumption of halogenated antibiotics, such as florfenicol (FLO), remain high, accompanied by a large amount of antibiotic-containing wastewater, which would induce the potential proliferation and transmission of antibiotic resistance genes (ARGs) in conventional biological systems. This study revealed that the introduction of reductive species (mainly H) by adding sulfite during UV irradiation process accelerated the decomposition rate of FLO, increasing from 0.1379 min-1 in the single UV photolytic system to 0.3375 min-1 in the UV/sulfite system. The enhanced photodecomposition in UV/sulfite system was attributed to the improved dehalogenation performance and additional removal of sulfomethyl group at the site of the benzene ring, which were the representative structures consisting of FLO antibacterial activity. Compared with single UV photolysis, UV/sulfite advanced reduction process saved the light energy requirement by 40 % for the evolutionary suppression of floR, and its corresponding class of ARGs in subsequent biotreatment system was controlled at the level of the negative group. Compared with UV/H2O2 and UV/persulfate systems, the decomposition rate of FLO in the UV/S system was the highest and preserved the corresponding carbon source of the coexisting organic compounds for the potential utilization of microbial metabolism in subsequent biotreatment process. These results demonstrated that UV/sulfite advanced reduction process could be adopted as a promising pretreatment option for the source prevention of representative ARGs proliferation of halogenated antibiotics in subsequent biotreatment process.


Subject(s)
Anti-Bacterial Agents , Wastewater , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/radiation effects , Benzene , Carbon , Cell Proliferation , Drug Resistance, Microbial/genetics , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Sulfites , Thiamphenicol/analogs & derivatives , Ultraviolet Rays
17.
Sci Total Environ ; 838(Pt 2): 156007, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35595130

ABSTRACT

Tetrabromobisphenol A (TBBPA), a hazardous and persistent flame retardant, has been widely detected in the natural aquatic system. The acceleration of reductive debromination (rate-limiting process) is vital during the decomposition and detoxification of TBBPA. This study achieved superior TBBPA electrochemical reductive debromination performance by nano Pd doped Ni foam electrode (4.8 times higher than Ni foam electrode). The optimal TBBPA reductive debromination performance was obtained under -1.2 V of cathode potential, 1.2 wt% of Pd loading, 10 mg L-1 of TBBPA and 100 mM of Na2SO4 as the electrolyte solution. UPLC-QTOF-MS verified that Br atoms in TBBPA were removed sequentially to form bisphenol A as the major product. Most TBBPA was reductively debrominated by atomic H* through indirect hydrodebromination, evidenced by the atomic H* quenching test. The higher solution conductivity and appropriate TBBPA concentration would contribute to the debromination efficiency. Excessive H2 generation whether by over negative potential or H atom richness electrolyte largely disturbed the reaction process and restricted the debromination. The improved generation of reductant (H*)adsPd was the most significant, while excessive Pd loading would make aggregation and limit the debromination efficiency. The study confirmed the optimization strategies of conditions for Pd/Ni foam electrode and revealed the related function mechanism for stimulating TBBPA electrochemical reduction, giving suggestions for the efficient removal of TBBPA in the aquatic environment.


Subject(s)
Flame Retardants , Polybrominated Biphenyls , Electrodes , Polybrominated Biphenyls/chemistry
18.
Chemosphere ; 295: 133935, 2022 May.
Article in English | MEDLINE | ID: mdl-35149011

ABSTRACT

The co-existence of volatile chlorinated hydrocarbons (VCHs) and nitrate pollution in groundwater is prominent, but how nitrate exposure affects weak-electrical stimulated bio-dechlorination activity of VCH is largely unknown. Here, by establishing weak-electrical stimulated trichloroethylene (TCE) dechlorination systems, the influence on TCE dechlorination by exposure to the different concentrations (25-100 mg L-1) of nitrate was investigated. The existence of nitrate in general decreased TCE dechlorination efficiency to varying degrees, and the higher nitrate concentration, the stronger the inhibitory effects, verified by the gradually decreased transcription levels of tceA. Although the TCE dechlorination kinetic rate constant decreased by 36% the most, under all nitrate concentration ranges, TCE could be completely removed within 32 h and no difference in generated metabolites was found, revealing the well-maintained dechlorination activity. This was due to the quickly enriched bio-denitrification activity, which removed nitrate completely within 9 h, and thus relieved the inhibition on TCE dechlorination. The obvious bacterial community structure succession was also observed, from dominating with dechlorination genera (e.g., Acetobacterium, Eubacterium) to dominating with both dechlorination and denitrification genera (e.g., Acidovorax and Brachymonas). The study proposed the great potential for the in situ simultaneous denitrification and dehalogenation in groundwater contaminated with both nitrate and VCHs.


Subject(s)
Groundwater , Hydrocarbons, Chlorinated , Trichloroethylene , Biodegradation, Environmental , Electric Stimulation , Groundwater/chemistry , Nitrates , Trichloroethylene/chemistry
19.
Analyst ; 147(6): 1060-1065, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35191458

ABSTRACT

Microcystin has been causing serious environmental pollution; however, the recognition of such compounds is still challenging because of low abundance and coexisting interfering species. In this contribution, we develop a novel microfluidic paper-based colorimetric sensor by exploiting molecular imprinting technology and Fenton reaction for on-site microcystin-RR determination in complex water samples using a smartphone.


Subject(s)
Molecular Imprinting , Polymers , Catalysis , Microcystins , Microfluidics
20.
J Hazard Mater ; 424(Pt B): 127341, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34634702

ABSTRACT

The need in using reclaimed water increased significantly to address the water shortage and its continuing quality deterioration in sustaining societal development. Degrading micropollutants in wastewater treatment plant effluents is one of the most important tasks in supplying safe drinking water, which is often achieved by full advanced treatment technologies (FATs), including reverse osmosis (RO) and the UV-based advanced oxidation process (AOP). As an emerging AOP, UV/chloramine process shows many noteworthy advantages in the scenario of potable water reuse, including membrane biological fouling control by chloramine, producing highly reactive radicals (e.g., Cl•, HO•, Cl2•-, and reactive nitrogen-containing species) to degrade the RO permeated pollutants, and acting as long-lasting disinfectant in the potable water distribution system. In addition, chloramine is often designedly produced by taking advantage of the ammonia in source. Thus, UV/chloramine processes gather much attention from researcher and published papers on UV/chloramine process have drastically increased since 2016, which were thoroughly reviewed in this paper. The fundamentals of chloramine photolysis, including the photolysis kinetics, the quantum yield, the generation and transformation of radicals and the final products, were scrutinized. Further, the impacts of reaction conditions such as pH, chloramine dosage and water matrix on the degradation of micropollutants by the UV/chloramine process are discussed. Moreover, the formation potential of disinfection by-products is debated. The opportunity of application of the UV/chloramine process in real-world practice is also presented, emphasizing the need for extensive efforts to remove currently prevalent knowledge roadblocks.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Water Purification , Chloramines , Hydrogen Peroxide , Oxidation-Reduction , Ultraviolet Rays , Wastewater/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...