Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Huan Jing Ke Xue ; 30(10): 2823-31, 2009 Oct 15.
Article in Chinese | MEDLINE | ID: mdl-19968093

ABSTRACT

Ammonia (NH3) emission from agro-ecosystem in the Sichuan-Chongqing region during 1990-2004, was estimated by the regional nitrogen cycling model IAP-N. The county level agricultural activities data were used, and Sichuan-Chongqing region was divided into four sub-areas by the geographical characteristics , environment and local climatic conditions and administrative division. The results showed that average annual ammonia emissions (in nitrogen gauge) in 1990-1994, 1995-1999, 2000-2004 were 626.7, 670.5 and 698.8 Gg x a(-1) respectively. The ammonia emission appeared increasing trend, whereas, the contribution of various ammonia sources presented little change. For instance, in 2000-2004, the contributions of NH3 emission from fertilized cropland, manure management system and field residues burning to the total ammonia emission of agro-ecosystem in the Sichuan-Chongqing region were 53%, 46% and 1%, equals to 374.9, 318.2 and 5.6 Gg x a(-1) respectively. But the contributions were variable in different regions. Ammonia emission was primarily induced by fertilized cropland in Chengdu plain and Chongqing hilly area, whereas, in northwest sub-region of Sichuan province was manure management system. The geographical distribution of ammonia emission from agro-ecosystem in the Sichuan-Chongqing region was generally "east high and west low". Ammonia emissions in sub-regions of Chongqing hilly area, Chengdu plain, southwest and northwest sub-regions were 165.6, 408.8, 85.9 and 38.8 Gg x a(-1), respectively, during 2000-2004. At the same time, ammonia density were 20 and 28 kg x (hm2 x a)(-1) in sub-regions of the Chongqing hilly area and the Chengdu plain, whereas, 9.1 and 1.6 kg x (hm2 x a)(-1) in southwest and northwest sub-regions, respectively. The results will provide a scientific basis for making fertilizer effectively applied and mitigate NH3 and GHG emissions from agro-ecosystem of Sichuan-Chongqing region.


Subject(s)
Air Pollutants/analysis , Ammonia/analysis , Crops, Agricultural/metabolism , Ecosystem , Nitrogen/analysis , Air Pollutants/metabolism , Ammonia/metabolism , Animals , China , Fertilizers , Manure
SELECTION OF CITATIONS
SEARCH DETAIL