Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 44
1.
PeerJ ; 12: e17370, 2024.
Article En | MEDLINE | ID: mdl-38737737

Cysteine-rich receptor-like kinases (CRKs) play many important roles during plant development, including defense responses under both biotic and abiotic stress, reactive oxygen species (ROS) homeostasis, callose deposition and programmed cell death (PCD). However, there are few studies on the involvement of the CRK family in male sterility due to heat stress in wheat (Triticum aestivum L.). In this study, a genome-wide characterization of the CRK family was performed to investigate the structural and functional attributes of the wheat CRKs in anther sterility caused by heat stress. A total of 95 CRK genes were unevenly distributed on 18 chromosomes, with the most genes distributed on chromosome 2B. Paralogous homologous genes with Ka/Ks ratios less than 1 may have undergone strong purifying selection during evolution and are more functionally conserved. The collinearity analysis results of CRK genes showed that wheat and Arabidopsis (A. thaliana), foxtail millet, Brachypodium distachyon (B. distachyon), and rice have three, 12, 15, and 11 pairs of orthologous genes, respectively. In addition, the results of the network interactions of genes and miRNAs showed that five miRNAs were in the hub of the interactions map, namely tae-miR9657b-5p, tae-miR9780, tae-miR9676-5p, tae-miR164, and tae-miR531. Furthermore, qRT-PCR validation of the six TaCRK genes showed that they play key roles in the development of the mononuclear stage anthers, as all six genes were expressed at highly significant levels in heat-stressed male sterile mononuclear stage anthers compared to normal anthers. We hypothesized that the TaCRK gene is significant in the process of high-temperature-induced sterility in wheat based on the combination of anther phenotypes, paraffin sections, and qRT-PCR data. These results improve our understanding of their relationship.


Gene Expression Regulation, Plant , Plant Infertility , Triticum , Triticum/genetics , Plant Infertility/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant/genetics , Hot Temperature/adverse effects , Multigene Family , Chromosomes, Plant/genetics , Heat-Shock Response/genetics , Gene Expression Profiling
2.
Cell Death Dis ; 15(5): 316, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710691

S100 calcium-binding protein 16 (S100A16) is implicated in both chronic kidney disease (CKD) and acute kidney injury (AKI). Previous research has shown that S100A16 contributes to AKI by facilitating the ubiquitylation and degradation of glycogen synthase kinase 3ß (GSK3ß) and casein kinase 1α (CK1α) through the activation of HMG-CoA reductase degradation protein 1 (HRD1). However, the mechanisms governing S100A16-induced HRD1 activation and the upregulation of S100A16 expression in renal injury are not fully understood. In this study, we observed elevated expression of Hypoxia-inducible Factor 1-alpha (HIF-1α) in the kidneys of mice subjected to ischemia-reperfusion injury (IRI). S100A16 deletion attenuated the increased HIF-1α expression induced by IRI. Using a S100A16 knockout rat renal tubular epithelial cell line (NRK-52E cells), we found that S100A16 knockout effectively mitigated apoptosis during hypoxic reoxygenation (H/R) and cell injury induced by TGF-ß1. Our results revealed that H/R injuries increased both protein and mRNA levels of HIF-1α and HRD1 in renal tubular cells. S100A16 knockout reversed the expressions of HIF-1α and HRD1 under H/R conditions. Conversely, S100A16 overexpression in NRK-52E cells elevated HIF-1α and HRD1 levels. HIF-1α overexpression increased HRD1 and ß-catenin while decreasing GSK-3ß. HIF-1α inhibition restored HRD1 and ß-catenin upregulation and GSK-3ß downregulation by cellular H/R injury. Notably, Chromatin immunoprecipitation (ChIP) and luciferase reporter assays demonstrated HIF-1α binding signals on the HRD1 promoter, and luciferase reporter gene assays confirmed HIF-1α's transcriptional regulation of HRD1. Additionally, we identified Transcription Factor AP-2 Beta (TFAP2B) as the upregulator of S100A16. ChIP and luciferase reporter assays confirmed TFAP2B as a transcription factor for S100A16. In summary, this study identifies TFAP2B as the transcription factor for S100A16 and demonstrates HIF-1α regulation of HRD1 transcription within the S100A16-HRD1-GSK3ß/CK1α pathway during renal hypoxia injury. These findings provide crucial insights into the molecular mechanisms of kidney injury, offering potential avenues for therapeutic intervention.


Glycogen Synthase Kinase 3 beta , Hypoxia-Inducible Factor 1, alpha Subunit , Animals , Glycogen Synthase Kinase 3 beta/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mice , Rats , S100 Proteins/metabolism , S100 Proteins/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Signal Transduction , Male , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/genetics , Mice, Inbred C57BL , Kidney/metabolism , Kidney/pathology , Apoptosis , Cell Line , Cell Hypoxia , Mice, Knockout
3.
Exp Ther Med ; 27(4): 148, 2024 Apr.
Article En | MEDLINE | ID: mdl-38476888

Diabetes mellitus (DM) is a disease that affects millions of individuals worldwide and is characterized by abnormal glucose metabolism that can induce severe damage to numerous organs throughout the body. Sex differences have been demonstrated in a number of factors associated with diabetes and its complications, such as diabetic kidney disease and diabetic liver disease. To investigate the sex differences in DM further, the changes in the weight, food and water intake, and blood sugar of mice were recorded for 8 weeks in the present study. Hematoxylin and eosin staining, Masson's trichrome staining and transmission electron microscopy were used to observe the pathological changes of liver and kidney tissues. There is no significant difference in the water intake and blood glucose concentration between db/db female and male mice was observed. However, sex differences in liver and kidney damage including glomerular injury and hepatic fibrosis were found. In conclusion, the present study characterized the features of liver and kidney damage in db/db mice and indicated that sex differences should be taken into account in experiments using female and male experimental animals. Furthermore, sex differences should be taken into account in the selection of drug interventions in experiments and in clinical drug therapy.

4.
Anal Chem ; 96(9): 3870-3878, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38373348

Gut microbiota can regulate host brain functions and influence various physiological and pathological processes through the brain-gut axis. To systematically elucidate the intervention of different gut environments on different brain regions, we implemented an integrated approach that combines 11-plex DiLeu isobaric tags with a "BRIDGE" normalization strategy to comparatively analyze the proteome of six brain regions in germ-free (GF)- and conventionally raised (ConvR)-mice. A total of 5945 proteins were identified and 5656 were quantifiable, while 1906 of them were significantly changed between GF- and ConvR-mice; 281 proteins were filtered with FC greater than 1.2 in at least one brain region, of which heatmap analysis showed clear protein profile disparities, both between brain regions and gut microbiome conditions. Gut microbiome impact is most overt in the hypothalamus and the least in the thalamus region. Collectively, this approach allows an in-depth investigation of the induced protein changes by multiple gut microbiome environments in a brain region-specific manner. This comprehensive proteomic work improves the understanding of the brain region protein association networks impacted by the gut microbiome and highlights the critical roles of the brain-gut axis.


Gastrointestinal Microbiome , Mice , Animals , Proteomics , Brain , Proteome
5.
Int J Biol Macromol ; 255: 128276, 2024 Jan.
Article En | MEDLINE | ID: mdl-37992919

Collagen peptide exhibits a great activity in osteogenic differentiation and wound healing. However, uncontrolled collagen peptide release in bone defects leads to unsatisfactory bone regeneration. In this work, we prepared collagen peptide loaded calcium alginate hydrogel (SA-CP/Ca) derived from Asia carp scales by mixing sodium alginate solution, collagen peptides, calcium carbonate, covalent cross-linking agents N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC), and N-hydroxysuccinimide (NHS) in one pot. Physically and chemically double cross-linking realized higher crosslink density, smaller porosity and pore size, and higher energy storage modulus and loss modulus, achieving sustained release of collagen peptides. The release profile is fitted to Keppas-Sahlin model, to find SA-CP/Ca hydrogels are more inclined to release collagen peptides through expansion and degradation. The compatibility and osteogenic ability of SA-CP/Ca are demonstrated in vitro and in vivo.


Carps , Hydrogels , Animals , Hydrogels/pharmacology , Osteogenesis , Collagen , Bone Regeneration , Peptides/pharmacology , Alginates
6.
Food Chem ; 419: 135983, 2023 Sep 01.
Article En | MEDLINE | ID: mdl-37011573

The soft-shelled turtle is a commercially aquatic species in Asian countries, which serves as an important source of collagen with high nutritional and medicinal value, so it is of great significance to distinguish soft-shelled turtle derived collagen from others or adulterations. In this work, peptidomics analysis based on post-translational modification (PTM) assay was used to discover specific peptide biomarkers of soft-shelled turtle gelatin (STG). In total eight specific sequences and 74 peptides with different PTM types were screened out, and seven peptides with good signal responses and STG specificity were selected and validated as STG-specific peptide biomarkers. These peptide biomarkers could be used for distinguishing STG from other animal gelatins, and applied for ensuring the quality of collagens or gelatins from soft-shelled turtle with authenticity and traceability.


Turtles , Animals , Turtles/physiology , Collagen , Peptides , Gelatin , Biomarkers
7.
Plant Cell ; 35(6): 2391-2412, 2023 05 29.
Article En | MEDLINE | ID: mdl-36869655

Mitogen-activated protein kinase (MPK) cascades play vital roles in plant innate immunity, growth, and development. Here, we report that the rice (Oryza sativa) transcription factor gene OsWRKY31 is a key component in a MPK signaling pathway involved in plant disease resistance in rice. We found that the activation of OsMKK10-2 enhances resistance against the rice blast pathogen Magnaporthe oryzae and suppresses growth through an increase in jasmonic acid and salicylic acid accumulation and a decrease of indole-3-acetic acid levels. Knockout of OsWRKY31 compromises the defense responses mediated by OsMKK10-2. OsMKK10-2 and OsWRKY31 physically interact, and OsWRKY31 is phosphorylated by OsMPK3, OsMPK4, and OsMPK6. Phosphomimetic OsWRKY31 has elevated DNA-binding activity and confers enhanced resistance to M. oryzae. In addition, OsWRKY31 stability is regulated by phosphorylation and ubiquitination via RING-finger E3 ubiquitin ligases interacting with WRKY 1 (OsREIW1). Taken together, our findings indicate that modification of OsWRKY31 by phosphorylation and ubiquitination functions in the OsMKK10-2-mediated defense signaling pathway.


Disease Resistance , Mitogen-Activated Protein Kinases , Phosphorylation , Disease Resistance/genetics , Mitogen-Activated Protein Kinases/metabolism , Signal Transduction , Ubiquitination
8.
Arch Med Sci ; 19(1): 229-236, 2023.
Article En | MEDLINE | ID: mdl-36817656

Introduction: To discuss the auxiliary therapeutic effect of buckwheat polysaccharide (BP) on S180 sarcoma. Material and methods: Buckwheat polysaccharide was extracted with water and precipitated with ethanol. Solid tumor and ascites tumor mice models were established. The mice in the high, medium and low dosing groups (n = 24, each group) had their stomachs filled with different doses of BP. The cyclophosphamide (CTX) group and the model group (n = 24, each group) were used as control groups. The influence on the life cycle, the rate of suppressing the tumor, the thymus index, and the spleen index were evaluated. Tumor cells were cultured in vitro and intervened with drugs; flow cytometry was used to detect the changes in the cell cycle. Results: Buckwheat polysaccharide significantly improved the lifespan and survival rate of the mice. The group of mice treated with the medium dose showed the best survival rate when compared to the ones that received high and low doses of BP (p < 0.01). The tumor cells cultured in vitro were arrested in the G0/G1 phase to some extent (p > 0.05). The cyclophosphamide arrested the cycle of the tumor cells in the G2/M period (p < 0.01). Buckwheat polysaccharide could increase the thymus index, spleen index and the rate of suppressing the tumor, but the differences were not statistically significant. Conclusions: Buckwheat polysaccharide had no obvious effect in inhibiting the growth of tumors, but it significantly extended the lifespan, increased the survival rate and reduced the toxic effect of CTX.

9.
Molecules ; 27(9)2022 May 03.
Article En | MEDLINE | ID: mdl-35566258

Tympanic membrane perforation (TMP), a common disease, often needs a scaffold as the patch to support surgery. Due to the environment of auditory meatus, the patch can be infected by bacteria that results in failure; therefore, the ideal scaffold may combine biomimetic and antibacterial features. In this work, gelatin was used as the electrospinning framework, genipin as the crosslinking agent, and levofloxacin as an antibacterial in order to prepare the scaffold for TMP. Different contents of levofloxacin have been added to gelatin/genipin. It was found that, with the addition of levofloxacin, the gelatin/genipin membranes exhibit improved hydrophilia and enhanced tensile strength. The antibacterial and cell-cultured experiments showed that the prepared antibacterial membranes had excellent antibacterial properties and good biocompatibility, respectively. In summary, levofloxacin is a good group for the gelatin/genipin scaffold because it improves the physical properties and antibacterial action. Compared with different amounts of levofloxacin, a gelatin/genipin membrane with 1% levofloxacin is more suitable for a TM.


Gelatin , Nanofibers , Anti-Bacterial Agents/pharmacology , Iridoids , Levofloxacin/pharmacology , Tissue Scaffolds , Tympanic Membrane
10.
Food Chem ; 390: 133111, 2022 Oct 01.
Article En | MEDLINE | ID: mdl-35569401

Response-boosting of MS signal was observed in gelatin samples due to abundant Glycine residues produced by collagen enzymolysis. In this work, a new strategy utilizing response-boosting to enhance detection sensitivity was developed for absolute quantification of Asini Corii Colla, a kind of gelatin commonly used as food therapy products in Asia, by high performance liquid chromatography coupled to tandem mass spectrometry. Peptidomics analysis was used to evaluate the similarity between eight different protein matrices, and deer-hide gelatin was selected as the appropriate simulated matrix. Isotope-labelled internal standard was used to compensate the matrix effect and construct matrix-matched calibration curves. The established method showed reliability in absolute quantification of three species-specific gelatin peptides with good linearity (r2 > 0.997), precision (RSD < 8.5%), repeatability (RSD < 8.9%), accuracy (recovery 89.4%∼106.5%) and sensitivity (LOD 0.02 âˆ¼ 0.98 ng/mL). Thus, the present response-boosting based protocol provides a promising application in quality control of food rich in gelatins.


Deer , Tandem Mass Spectrometry , Animals , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid , Collagen , Gelatin/chemistry , Peptides , Reproducibility of Results , Tandem Mass Spectrometry/methods
11.
Aging (Albany NY) ; 14(8): 3416-3424, 2022 04 19.
Article En | MEDLINE | ID: mdl-35439732

D-Chiro-inositol (DCI) exerts a hypoglycaemic effect, participates in lipid metabolism and reduces kidney damage. In this study, we preliminarily explored the protective effect of DCI on renal injury in diabetic mice. Male db/db mice were used in this study. After treatment with DCI (35 and 70 mg/kg/d) for 6 consecutive weeks, random blood glucose (RBG) measurements were conducted at 0 and 6 weeks. Creatinine (Cr) and serum blood urea nitrogen (BUN) levels were measured using assay kit, and morphological changes in the kidneys were observed by HE staining, Masson staining and electron microscopy. Immunohistochemical and Western blot experiments were used to examine the protein expression of matrix metalloproteinase-9 (MMP-9), nuclear factor-κB (NF-κB) and peroxisome proliferator-activated receptor-γ (PPAR-γ). We discovered that the increased RBG levels were alleviated after treatment with DCI. Moreover, the Cr and BUN levels were reduced, glomerular mesangial hyperplasia was alleviated, and the degree of renal fibrosis was reduced. In addition, DCI improved the protein expression of MMP-9 and PPAR-γ in kidney tissue, which in turn inhibited NF-κB protein expression, as shown by immunohistochemistry and Western blotting. Our findings showed that DCI ameliorated the renal injury induced by diabetes by upregulating MMP-9 and PPAR-γ expression and downregulating NF-κB expression. We preliminarily concluded that the renal protective effect of DCI on diabetic mice may occurs through the MMP-9/NF-κB signalling pathway.


Diabetes Mellitus, Experimental , Diabetic Nephropathies , Animals , Creatinine , Diabetes Mellitus, Experimental/drug therapy , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/prevention & control , Female , Humans , Inositol/pharmacology , Inositol/therapeutic use , Kidney/metabolism , Male , Matrix Metalloproteinase 9 , Mice , NF-kappa B/metabolism , PPAR gamma
12.
Rice (N Y) ; 15(1): 12, 2022 Feb 20.
Article En | MEDLINE | ID: mdl-35184252

Background OsWRKY62 and OsWRKY76, two close members of WRKY transcription factors, function together as transcriptional repressors. OsWRKY62 is predominantly localized in the cytosol. What are the regulatory factors for OsWRKY62 nuclear translocation? Results In this study, we characterized the interaction of OsWRKY62 and OsWRKY76 with rice importin, OsIMα1a and OsIMα1b, for nuclear translocation. Chimeric OsWRKY62.1-GFP, which is predominantly localized in the cytoplasm, was translocated to the nucleus of Nicotiana benthamiana leaf cells in the presence of OsIMα1a or OsIMαΔIBB1a lacking the auto-inhibitory importin ß-binding domain. OsIMαΔIBB1a interacted with the WRKY domain of OsWRKY62.1, which has specific bipartite positively charged concatenated amino acids functioning as a nuclear localization signal (NLS). Similarly, we found that OsIMαΔIBB1a interacted with the AvrPib effector of rice blast fungus Magnaporthe oryzae, which contains a scattered distribution of positively charged amino acids. Furthermore, we identified a nuclear export signal (NES) in OsWRKY62.1 that inhibited nuclear transportation. Overexpression of OsIMα1a or OsIMα1b enhanced resistance to M. oryzae, whereas knockout mutants decreased resistance to the pathogen. However, overexpressing both OsIMα1a and OsWRKY62.1 were slightly more susceptible to M. oryzae than OsWRKY62.1 alone. Ectopic overexpression of OsWRKY62.1-NES fused gene compromised the enhanced susceptibility of OsWRKY62.1 to M. oryzae. Conclusion These results revealed the existence of NLS and NES in OsWRKY62. OsWRKY62, OsWRKY76, and AvrPib effector translocate to nucleus in association with importin α1s through new types of nuclear localization signals for negatively regulating defense responses.

13.
J Sep Sci ; 45(4): 812-823, 2022 Feb.
Article En | MEDLINE | ID: mdl-34898000

A new strategy combined gold-coated magnetic nanocomposites assisted enrichment with mass spectrometry was developed for the characterization of disulfide bond-contained proteins from Chinese cobra (Naja atra) venom. In this work, core-shell nanocomposites were synthesized by the seed-mediated growth method and used for the enrichment of snake venom proteins containing disulfide bonds. A total of 3545 tryptic digested peptides derived from 96 venom proteins in Naja atra venom were identified. The venom proteins comprised 14 toxin families including three-finger toxins, phospholipase A2 , snake venom metalloproteinase, cobra venom factor, and so forth. Extra 16 venom proteins were detected exclusively in the nanocomposites set, among which 11 venom proteins were from the three-finger toxins family. In the present study, the proposed simple and efficient protocol replaced the tedious and laborious technologies commonly used for pre-separating crude snake venom, suggesting widely implementation in low-abundance or trace disulfide bond-contained proteins or peptides characterization.


Antivenins , Naja naja , Animals , Antivenins/analysis , Antivenins/chemistry , Antivenins/metabolism , Disulfides , Naja naja/metabolism , Proteome/analysis , Proteomics/methods
14.
Cell Death Dis ; 12(10): 942, 2021 10 13.
Article En | MEDLINE | ID: mdl-34645789

Recent studies have indicated that the development of acute and chronic kidney disease including renal fibrosis is associated with endoplasmic reticulum (ER) stress. S100 calcium-binding protein 16 (S100A16) as a novel member of the S100 family is involved in kidney disease; however, few studies have examined fibrotic kidneys for a relationship between S100A16 and ER stress. In our previous study, we identified GRP78 as a protein partner of S100A16 in HK-2 cells. Here, we confirmed a physical interaction between GRP78 and S100A16 in HK-2 cells and a markedly increased expression of GRP78 in the kidneys of unilateral ureteral occlusion mice. S100A16 overexpression in HK-2 cells by infection with Lenti-S100A16 also induced upregulation of ER stress markers, including GRP78, p-IRE1α, and XBP1s. Immunofluorescence staining demonstrated that the interaction between S100A16 and GRP78 predominantly occurred in the ER of control HK-2 cells. By contrast, HK-2 cells overexpressing S100A16 showed colocalization of S100A16 and GRP78 mainly in the cytoplasm. Pretreatment with BAPTA-AM, a calcium chelator, blunted the upregulation of renal fibrosis genes and ER stress markers induced by S100A16 overexpression in HK-2 cells and suppressed the cytoplasmic colocalization of GRP78 and S100A16. Co-immunoprecipitation studies suggested a competitive binding between S100A16 and IRE1α with GRP78 in HK-2 cells. Taken together, our findings demonstrate a significant increase in S100A16 expression in the cytoplasm following renal injury. GRP78 then moves into the cytoplasm and binds with S100A16 to promote the release of IRE1α. The subsequent phosphorylation of IRE1α then leads to XBP1 splicing that activates ER stress.


Endoplasmic Reticulum Chaperone BiP/metabolism , Endoplasmic Reticulum Stress , Endoribonucleases/metabolism , Kidney/pathology , S100 Proteins/metabolism , Signal Transduction , X-Box Binding Protein 1/metabolism , Animals , Calcium/metabolism , Cell Line , Fibrosis , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Biological , Protein Binding , Transforming Growth Factor beta1 , Up-Regulation , Ureteral Obstruction/metabolism , Ureteral Obstruction/pathology
15.
Front Pharmacol ; 12: 656220, 2021.
Article En | MEDLINE | ID: mdl-34497509

We have previously reported that Agriophyllum oligosaccharides (AOS) significantly enhance glycemic control by increasing the activation of insulin receptor (INS-R), insulin receptor substrate-2 (IRS-2), phosphatidylinositol 3 kinase (PI3K), protein kinase B (AKT), peroxisome proliferator-activated receptor (PPAR)-γ, and glucose transporter 4 (Glut4) proteins in hepatic tissues. However, the effect of glucose control by AOS on the regulation of pancreatic tissues in db/db mice and MIN6 cells remains to be determined. An oral dose of AOS (380 or 750 mg/kg) was administered to type-2 diabetic db/db mice for 8 weeks to determine whether AOS regulates glucose by the INS-R/IRS/Glut4-mediated insulin pathway. Meanwhile, the effects of AOS on glucose uptake and its related signaling pathway in MIN6 cells were also investigated. The results showed that the random blood glucose (RBG) level in the AOS-treated group was lower than that in the control group. AOS reduced the levels of glycated hemoglobin (HbA1c) and free fatty acid (FFA) and significantly improved the pathological changes in the pancreatic tissues in db/db mice. Moreover, immunohistochemical analysis revealed that the expression of INS-R, IRS-1, IRS-2, and Glut4 was increased in the AOS-treated group than in the model group. Further, in vitro experiments using MIN6 cells showed that AOS regulated INS-R, IRS-1, IRS-2, and Glut4 protein and mRNA levels and attenuated insulin resistance and cell apoptosis. The results of both in vitro and in vivo experiments were comparable. Ultra-performance liquid chromatography coupled with time-of-flight mass spectrometric analysis of AOS with precolumn derivatization with 3-amino-9-ethylcarbazole (AEC) tentatively identified five types of sugars: glucose, lactose, rutinose, glucuronic acid, and maltotriose. Our present study clearly showed that AOS is efficacious in preventing hyperglycemia, possibly by increasing insulin sensitivity and improving IR by regulating the INS-R/IRS/Glut4 insulin signal pathway. Therefore, AOS may be considered as a potential drug for diabetes treatment.

16.
Food Chem ; 363: 130347, 2021 Nov 30.
Article En | MEDLINE | ID: mdl-34147893

Gelatin and gelatin-based derivatives have been attracting worldwide attention as health-food ingredients. Deer horn gelatin (DCG), a well-known and expensive gelatin food in Asia, has suffered adulterants by adding deer-hide gelatin (DHG) in it. However, robust and effective methods which could differentiate DCG from DHG are still unavailable. This study is committed to discover peptide biomarkers to distinguish DCG from DHG using label-free peptidomics by nanoLC-MS/MS. Multivariate statistical analysis combined with glycosylation sites analysis of peptides was applied to visualize the difference between DCG and DHG. As a result, four peptide biomarkers for distinguishing DCG and DHG were confirmed and validated by UPLC-MS/MS and MRM mode, which was also used to calculate adulteration percentage in commercial samples. The presented strategy may be also particularly helpful in the in-depth authentication of food gelatins from different tissues of the same species.


Deer , Gelatin/chemistry , Animals , Antlers/chemistry , Biomarkers , Chromatography, Liquid , Peptides , Skin/chemistry , Tandem Mass Spectrometry
17.
Chin Herb Med ; 13(2): 261-266, 2021 Apr.
Article En | MEDLINE | ID: mdl-36117504

Objective: As an important food therapy product with traditional Chinese medicine (TCM) applications, donkey-hide gelatin (Asini Corii Colla, ACC) has been used for thousands of years. However, till now few effective strategy had been proposed to distinguish ACC from other animal hide gelatins, especially closely related horse- and mule-hide gelatins, which was an embarrassment of ACC quality control. Methods: Combined mass spectrometry and bioinformatic methods have been applied to identify and verify two ACC-specific peptides (Pep-1 and Pep-2) capable of distinguishing ACC from other closely related animal gelatins with high selectivity. Results: It confirmed that these two peptides could be not only used for distinguishing ACC from highly homologous horse-hide and mule-hide gelatins as well as other animal hide gelatins. Conclusion: The present study provides a simple method for species-specific peptides discovery, which can be used for assessing the quality of animal gelatin products, and ensure they are authenticable and traceable.

18.
Food Chem ; 339: 127766, 2021 Mar 01.
Article En | MEDLINE | ID: mdl-32866697

An on-line enrichment-liquid chromatography-fluorescence detection (LC-FD) method was developed for simultaneous determination of nine bisphenols (BPs). In this process, we predicted the separation based on an in-house developed software allowing for calculating both retention time (tR) and half-peak width (W1/2) of the solute by mobile phase fraction (φ) under gradient conditions. The proposed strategy was applied to separation prediction of BPs with high accuracy. Under the optimized conditions, good linearity was obtained with the correlation coefficients (R2) ranging from 0.998 to 1.000. The recoveries in spiked samples were 91.3-110.7% with the intra-day and inter-day relative standard deviation ranging 0.4-9.6% and 0.5-10.2%, respectively. The limits of detection and quantification were 0.13-66.7 ng L-1 and 0.40-200 ng L-1. The developed approach was used to monitor the nine BPs in 28 children's water bottles. The developed method provides an effective way for monitoring bisphenols in other similar matrix.


Chromatography, High Pressure Liquid/methods , Drinking Water/analysis , Food Packaging , Phenols/analysis , Water Pollutants, Chemical/analysis , Child , China , Fluorescence , Food Contamination/analysis , Humans , Limit of Detection , Phenols/chemistry , Reproducibility of Results , Software
19.
Anal Chem ; 92(20): 14021-14030, 2020 10 20.
Article En | MEDLINE | ID: mdl-32926775

Gut microbiota can regulate host physiological and pathological status through gut-brain communications or pathways. However, the impact of the gut microbiome on neuropeptides and proteins involved in regulating brain functions and behaviors is still not clearly understood. To address the problem, integrated label-free and 10-plex DiLeu isobaric tag-based quantitative methods were implemented to compare the profiling of neuropeptides and proteins in the hypothalamus of germ-free (GF)- vs conventionally raised (ConvR)-mice. A total of 2943 endogenous peptides from 63 neuropeptide precursors and 3971 proteins in the mouse hypothalamus were identified. Among these 368 significantly changed peptides (fold changes over 1.5 and a p-value of <0.05), 73.6% of the peptides showed higher levels in GF-mice than in ConvR-mice, and 26.4% of the peptides had higher levels in ConvR-mice than in GF-mice. These peptides were mainly from secretogranin-2, phosphatidylethanolamine-binding protein-1, ProSAAS, and proenkephalin-A. A quantitative proteomic analysis employing DiLeu isobaric tags revealed that 282 proteins were significantly up- or down-regulated (fold changes over 1.2 and a p-value of <0.05) among the 3277 quantified proteins. These neuropeptides and proteins were mainly involved in regulating behaviors, transmitter release, signaling pathways, and synapses. Interestingly, pathways including long-term potentiation, long-term depression, and circadian entrainment were involved. In the present study, a combined label-free and 10-plex DiLeu-based quantitative method enabled a comprehensive profiling of gut microbiome-induced dynamic changes of neuropeptides and proteins in the hypothalamus, suggesting that the gut microbiome might mediate a range of behavioral changes, brain development, and learning and memory through these neuropeptides and proteins.


Gastrointestinal Microbiome/physiology , Hypothalamus/metabolism , Leucine/analogs & derivatives , Leucine/chemistry , Neuropeptides/metabolism , Proteome/metabolism , Amines/chemistry , Animals , Male , Mice , Mice, Inbred C57BL , Models, Animal , Proteomics , Tandem Mass Spectrometry
20.
Analyst ; 145(14): 4772-4776, 2020 Jul 21.
Article En | MEDLINE | ID: mdl-32558830

Herein we synthesize a DNA-sensitized Tb-MOF conjugate (DNA-Tb-MOF) as a time-resolved luminescent probe to sensitively and selectively assay SO2 and their derivatives (i.e., HSO3-) through a photoluminescence off-on effect. The charge and energy transfer mechanism enables the demonstration of the effect of the photoluminescence turn-on which results from the reaction between the amino group of the DNA-Tb-MOF conjugate and SO2/HSO3-. The results demonstrate that the DNA-Tb-MOF conjugate probe can sense SO2 and their derivatives (i.e., HSO3-) with a detection limit of 0.02 ppm. Moreover, the photoluminescence off-on effect can be observed even by the naked eye.

...