Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 10(27): 23029-23036, 2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29914262

ABSTRACT

Efficient catalytic hydrogenation of nitroarenes to anilines with molecular hydrogen at room temperature is still a challenge. In this study, this transformation was achieved by using a photocatalyst of SiC-supported segregated Pd and Au nanoparticles. Under visible-light irradiation, the nitrobenzene hydrogenation reached a turnover frequency as high as 1715 h-1 at 25 °C and 0.1 MPa of H2 pressure. This exceptional catalytic activity is attributed to a synergistic effect of Pd and Au nanoparticles on the semiconducting SiC, which is different from the known electronic or ensemble effects in Pd-Au catalysts. This kind of synergism originates from the plasmonic electron injection of Au and the Mott-Schottky contact at the interface between Pd and SiC. This three-component system changes the electronic structures of the SiC surface and produces more active sites to accommodate the active hydrogen that spills over from the surface of Pd. These active hydrogen species have weaker interactions with the SiC surface and thus are more mobile than on an inert support, resulting in an ease in reacting with the N═O bonds in nitrobenzene absorbed on SiC to produce aniline.

2.
J Am Chem Soc ; 138(30): 9361-4, 2016 08 03.
Article in English | MEDLINE | ID: mdl-27403658

ABSTRACT

Highly selective hydrogenation of cinnamaldehyde to cinnamyl alcohol with 2-propanol was achieved using SiC-supported Au nanoparticles as photocatalyst. The hydrogenation reached a turnover frequency as high as 487 h(-1) with 100% selectivity for the production of alcohol under visible light irradiation at 20 °C. This high performance is attributed to a synergistic effect of localized surface plasmon resonance of Au NPs and charge transfer across the SiC/Au interface. The charged metal surface facilitates the oxidation of 2-propanol to form acetone, while the electron and steric effects at the interface favor the preferred end-adsorption of α,ß-unsaturated aldehydes for their selective conversion to unsaturated alcohols. We show that this Au/SiC photocatalyst is capable of hydrogenating a large variety of α,ß-unsaturated aldehydes to their corresponding unsaturated alcohols with high conversion and selectivity.

SELECTION OF CITATIONS
SEARCH DETAIL