Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 877
Filter
1.
Transl Psychiatry ; 14(1): 358, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39231932

ABSTRACT

Although there are several genome-wide association studies available which highlight genetic variants associated with Alzheimer's disease (AD), often the X chromosome is excluded from the analysis. We conducted an X-chromosome-wide association study (XWAS) in three independent studies with a pathologically confirmed phenotype (total 1970 cases and 1113 controls). The XWAS was performed in males and females separately, and these results were then meta-analysed. Four suggestively associated genes were identified which may be of potential interest for further study in AD, these are DDX53 (rs12006935, OR = 0.52, p = 6.9e-05), IL1RAPL1 (rs6628450, OR = 0.36, p = 4.2e-05; rs137983810, OR = 0.52, p = 0.0003), TBX22 (rs5913102, OR = 0.74, p = 0.0003) and SH3BGRL (rs186553004, OR = 0.35, p = 0.0005; rs113157993, OR = 0.52, p = 0.0003), which replicate across at least two studies. The SNP rs5913102 in TBX22 achieves chromosome-wide significance in meta-analysed data. DDX53 shows highest expression in astrocytes, IL1RAPL1 is most highly expressed in oligodendrocytes and neurons and SH3BGRL is most highly expressed in microglia. We have also identified SNPs in the NXF5 gene at chromosome-wide significance in females (rs5944989, OR = 0.62, p = 1.1e-05) but not in males (p = 0.83). The discovery of relevant AD associated genes on the X chromosome may identify AD risk differences and similarities based on sex and lead to the development of sex-stratified therapeutics.


Subject(s)
Alzheimer Disease , Chromosomes, Human, X , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Humans , Alzheimer Disease/genetics , Male , Female , Case-Control Studies , Chromosomes, Human, X/genetics , Aged , White People/genetics , Genetic Predisposition to Disease , Aged, 80 and over , DEAD-box RNA Helicases/genetics , Interleukin-1 Receptor Accessory Protein/genetics
2.
bioRxiv ; 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39257816

ABSTRACT

Alpha-synuclein (αSyn) is an intrinsically disordered protein that accumulates in the brains of patients with Parkinson's disease and forms intraneuronal inclusions called Lewy Bodies. While the mechanism underlying the dysregulation of αSyn in Parkinson's disease is unclear, it is thought that prionoid cell-to-cell propagation of αSyn has an important role. Through a high throughput screen, we recently identified 38 genes whose knock down modulates αSyn propagation. Follow up experiments were undertaken for two of those genes, TAX1BP1 and ADAMTS19, to study the mechanism with which they regulate αSyn homeostasis. We used a recently developed M17D neuroblastoma cell line expressing triple mutant (E35K+E46K+E61K) "3K" αSyn under doxycycline induction. 3K αSyn spontaneously forms inclusions that show ultrastructural similarities to Lewy Bodies. Experiments using that cell line showed that TAX1BP1 and ADAMTS19 regulate how αSyn interacts with lipids and phase separates into inclusions, respectively, adding to the growing body of evidence implicating those processes in Parkinson's disease. Through RNA sequencing, we identified several genes that are differentially expressed after knock-down of TAX1BP1 or ADAMTS19. Burden analysis revealed that those differentially expressed genes (DEGs) carry an increased frequency of rare risk variants in Parkinson's disease patients versus healthy controls, an effect that was independently replicated across two separate cohorts (GP2 and AMP-PD). Weighted gene co-expression network analysis (WGCNA) showed that the DEGs cluster within modules in regions of the brain that develop high degrees of αSyn pathology (basal ganglia, cortex). We propose a novel model for the genetic architecture of sporadic Parkinson's disease: increased burden of risk variants across genetic networks dysregulates pathways underlying αSyn homeostasis, thereby leading to pathology and neurodegeneration.

3.
Nat Commun ; 15(1): 7880, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39251599

ABSTRACT

Progressive supranuclear palsy (PSP), a rare Parkinsonian disorder, is characterized by problems with movement, balance, and cognition. PSP differs from Alzheimer's disease (AD) and other diseases, displaying abnormal microtubule-associated protein tau by both neuronal and glial cell pathologies. Genetic contributors may mediate these differences; however, the genetics of PSP remain underexplored. Here we conduct the largest genome-wide association study (GWAS) of PSP which includes 2779 cases (2595 neuropathologically-confirmed) and 5584 controls and identify six independent PSP susceptibility loci with genome-wide significant (P < 5 × 10-8) associations, including five known (MAPT, MOBP, STX6, RUNX2, SLCO1A2) and one novel locus (C4A). Integration with cell type-specific epigenomic annotations reveal an oligodendrocytic signature that might distinguish PSP from AD and Parkinson's disease in subsequent studies. Candidate PSP risk gene prioritization using expression quantitative trait loci (eQTLs) identifies oligodendrocyte-specific effects on gene expression in half of the genome-wide significant loci, and an association with C4A expression in brain tissue, which may be driven by increased C4A copy number. Finally, histological studies demonstrate tau aggregates in oligodendrocytes that colocalize with C4 (complement) deposition. Integrating GWAS with functional studies, epigenomic and eQTL analyses, we identify potential causal roles for variation in MOBP, STX6, RUNX2, SLCO1A2, and C4A in PSP pathogenesis.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Quantitative Trait Loci , Supranuclear Palsy, Progressive , tau Proteins , Humans , Supranuclear Palsy, Progressive/genetics , Supranuclear Palsy, Progressive/pathology , Supranuclear Palsy, Progressive/metabolism , Aged , Male , Female , tau Proteins/genetics , tau Proteins/metabolism , Transcriptome , Polymorphism, Single Nucleotide , Neuroglia/metabolism , Neuroglia/pathology , Aged, 80 and over , Oligodendroglia/metabolism , Oligodendroglia/pathology , Middle Aged , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Case-Control Studies , Myelin Proteins
4.
Mov Disord ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39283294

ABSTRACT

BACKGROUND: Commercial genome-wide genotyping arrays have historically neglected coverage of genetic variation across populations. OBJECTIVE: We aimed to create a multi-ancestry genome-wide array that would include a wide range of neuro-specific genetic content to facilitate genetic research in neurological disorders across multiple ancestral groups, fostering diversity and inclusivity in research studies. METHODS: We developed the Illumina NeuroBooster Array (NBA), a custom high-throughput and cost-effective platform on a backbone of 1,914,934 variants from the Infinium Global Diversity Array and added custom content comprising 95,273 variants associated with more than 70 neurological conditions or traits, and we further tested its performance on more than 2000 patient samples. This novel platform includes approximately 10,000 tagging variants to facilitate imputation and analyses of neurodegenerative disease-related genome-wide association study loci across diverse populations. RESULTS: In this article, we describe NBA's potential as an efficient means for researchers to assess known and novel disease genetic associations in a multi-ancestry framework. The NBA can identify rare genetic variants and accurately impute more than 15 million common variants across populations. Apart from enabling sample prioritization for further whole-genome sequencing studies, we envisage that NBA will play a pivotal role in recruitment for interventional studies in the precision medicine space. CONCLUSIONS: From a broader perspective, the NBA serves as a promising means to foster collaborative research endeavors in the field of neurological disorders worldwide. Ultimately, this carefully designed tool is poised to make a substantial contribution to uncovering the genetic etiology underlying these debilitating conditions. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

5.
J Biomed Mater Res A ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984402

ABSTRACT

Injectable in situ-forming scaffolds that induce both angiogenesis and osteogenesis have been proven to be promising for bone healing applications. Here, we report the synthesis of an injectable hydrogel containing cobalt-doped bioactive glass (BG)-loaded microspheres. Silk fibroin (SF)/gelatin microspheres containing BG particles were fabricated through microfluidics. The microspheres were mixed in an injectable alginate solution, which formed an in situ hydrogel by adding CaCl2. The hydrogel was evaluated for its physicochemical properties, in vitro interactions with osteoblast-like and endothelial cells, and bone healing potential in a rat model of calvarial defect. The microspheres were well-dispersed in the hydrogel and formed pores of >100 µm. The hydrogel displayed shear-thinning behavior and modulated the cobalt release so that the optimal cobalt concentration for angiogenic stimulation, cell proliferation, and deposition of mineralized matrix was only achieved by the scaffold that contained BG doped with 5% wt/wt cobalt (A-S-G5Co). In the scaffold containing higher cobalt content, a reduced biomimetic mineralization on the surface was observed. The gene expression study indicated an upregulation of the osteogenic genes of COL1A1, ALPL, OCN, and RUNX2 and angiogenic genes of HIF1A and VEGF at different time points in the cells cultured with the A-S-G5Co. Finally, the in vivo study demonstrated that A-S-G5Co significantly promoted both angiogenesis and osteogenesis and improved bone healing after 12 weeks of follow-up. These results show that incorporation of SF/gelatin microspheres containing cobalt-doped BG in an injectable in situ-forming scaffold can effectively enhance its bone healing potential through promotion of angiogenesis and osteogenesis.

6.
Brain Commun ; 6(4): fcae190, 2024.
Article in English | MEDLINE | ID: mdl-38978726

ABSTRACT

Up to 80% of Parkinson's disease patients develop dementia, but time to dementia varies widely from motor symptom onset. Dementia with Lewy bodies presents with clinical features similar to Parkinson's disease dementia, but cognitive impairment precedes or coincides with motor onset. It remains controversial whether dementia with Lewy bodies and Parkinson's disease dementia are distinct conditions or represent part of a disease spectrum. The biological mechanisms underlying disease heterogeneity, in particular the development of dementia, remain poorly understood, but will likely be the key to understanding disease pathways and, ultimately, therapy development. Previous genome-wide association studies in Parkinson's disease and dementia with Lewy bodies/Parkinson's disease dementia have identified risk loci differentiating patients from controls. We collated data for 7804 patients of European ancestry from Tracking Parkinson's, The Oxford Discovery Cohort, and Accelerating Medicine Partnership-Parkinson's Disease Initiative. We conducted a discrete phenotype genome-wide association study comparing Lewy body diseases with and without dementia to decode disease heterogeneity by investigating the genetic drivers of dementia in Lewy body diseases. We found that risk allele rs429358 tagging APOEe4 increases the odds of developing dementia, and that rs7668531 near the MMRN1 and SNCA-AS1 genes and an intronic variant rs17442721 tagging LRRK2 G2019S on chromosome 12 are protective against dementia. These results should be validated in autopsy-confirmed cases in future studies.

8.
Bioengineering (Basel) ; 11(7)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39061731

ABSTRACT

Microneedle arrays are minimally invasive devices that have been extensively investigated for the transdermal/intradermal delivery of drugs/bioactives. Here, we demonstrate the release of bioactive molecules (estradiol, melatonin and meropenem) from poly(2-hydroxyethyl methacrylate), pHEMA, hydrogel-based microneedle patches in vitro. The pHEMA hydrogel microneedles had mechanical properties that were sufficiently robust to penetrate soft tissues (exemplified here by phantom tissues). The bioactive release from the pHEMA hydrogel-based microneedles was fitted to various models (e.g., zero order, first order, second order). Such pHEMA microneedles have potential application in the transdermal delivery of bioactives (exemplified here by estradiol, melatonin and meropenem) for the treatment of various conditions.

9.
Lancet Neurol ; 23(7): 725-739, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38876750

ABSTRACT

Nucleotide repeat expansions in the human genome are a well-known cause of neurological disease. In the past decade, advances in DNA sequencing technologies have led to a better understanding of the role of non-coding DNA, that is, the DNA that is not transcribed into proteins. These techniques have also enabled the identification of pathogenic non-coding repeat expansions that cause neurological disorders. Mounting evidence shows that adult patients with familial or sporadic presentations of epilepsy, cognitive dysfunction, myopathy, neuropathy, ataxia, or movement disorders can be carriers of non-coding repeat expansions. The description of the clinical, epidemiological, and molecular features of these recently identified non-coding repeat expansion disorders should guide clinicians in the diagnosis and management of these patients, and help in the genetic counselling for patients and their families.


Subject(s)
Nervous System Diseases , Humans , Nervous System Diseases/genetics , Nervous System Diseases/diagnosis , Diagnosis, Differential , DNA Repeat Expansion/genetics
11.
Nat Neurosci ; 27(7): 1236-1252, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38898183

ABSTRACT

Alzheimer's disease (AD) is a complex, progressive primary neurodegenerative disease. Since pivotal genetic studies in 1993, the ε4 allele of the apolipoprotein E gene (APOE ε4) has remained the strongest single genome-wide associated risk variant in AD. Scientific advances in APOE biology, AD pathophysiology and ApoE-targeted therapies have brought APOE to the forefront of research, with potential translation into routine AD clinical care. This contemporary Review will merge APOE research with the emerging AD clinical care pathway and discuss APOE genetic risk as a conduit to genomic-based precision medicine in AD, including ApoE's influence in the ATX(N) biomarker framework of AD. We summarize the evidence for APOE as an important modifier of AD clinical-biological trajectories. We then illustrate the utility of APOE testing and the future of ApoE-targeted therapies in the next-generation AD clinical-diagnostic pathway. With the emergence of new AD therapies, understanding how APOE modulates AD pathophysiology will become critical for personalized AD patient care.


Subject(s)
Alzheimer Disease , Apolipoproteins E , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/therapy , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Genetic Predisposition to Disease , Precision Medicine/methods , Animals , Apolipoprotein E4/genetics
12.
Sci Adv ; 10(26): eadk1296, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38924406

ABSTRACT

Mutations in GBA1 cause Gaucher disease and are the most important genetic risk factor for Parkinson's disease. However, analysis of transcription at this locus is complicated by its highly homologous pseudogene, GBAP1. We show that >50% of short RNA-sequencing reads mapping to GBA1 also map to GBAP1. Thus, we used long-read RNA sequencing in the human brain, which allowed us to accurately quantify expression from both GBA1 and GBAP1. We discovered significant differences in expression compared to short-read data and identify currently unannotated transcripts of both GBA1 and GBAP1. These included protein-coding transcripts from both genes that were translated in human brain, but without the known lysosomal function-yet accounting for almost a third of transcription. Analyzing brain-specific cell types using long-read and single-nucleus RNA sequencing revealed region-specific variations in transcript expression. Overall, these findings suggest nonlysosomal roles for GBA1 and GBAP1 with implications for our understanding of the role of GBA1 in health and disease.


Subject(s)
Glucosylceramidase , Pseudogenes , Humans , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Pseudogenes/genetics , Brain/metabolism , Molecular Sequence Annotation , Parkinson Disease/genetics , Parkinson Disease/metabolism , Gaucher Disease/genetics , Sequence Analysis, RNA/methods
13.
NPJ Parkinsons Dis ; 10(1): 113, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849413

ABSTRACT

There are 90 independent genome-wide significant genetic risk variants for Parkinson's disease (PD) but currently only five nominated loci for PD progression. The biology of PD progression is likely to be of central importance in defining mechanisms that can be used to develop new treatments. We studied 6766 PD patients, over 15,340 visits with a mean follow-up of between 4.2 and 15.7 years and carried out genome-wide survival studies for time to a motor progression endpoint, defined by reaching Hoehn and Yahr stage 3 or greater, and death (mortality). There was a robust effect of the APOE ε4 allele on mortality in PD. We also identified a locus within the TBXAS1 gene encoding thromboxane A synthase 1 associated with mortality in PD. We also report 4 independent loci associated with motor progression in or near MORN1, ASNS, PDE5A, and XPO1. Only the non-Gaucher disease causing GBA1 PD risk variant E326K, of the known PD risk variants, was associated with mortality in PD. Further work is needed to understand the links between these genomic variants and the underlying disease biology. However, these may represent new candidates for disease modification in PD.

14.
Brain ; 147(8): 2680-2690, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38820112

ABSTRACT

Alzheimer's disease typically progresses in stages, which have been defined by the presence of disease-specific biomarkers: amyloid (A), tau (T) and neurodegeneration (N). This progression of biomarkers has been condensed into the ATN framework, in which each of the biomarkers can be either positive (+) or negative (-). Over the past decades, genome-wide association studies have implicated ∼90 different loci involved with the development of late-onset Alzheimer's disease. Here, we investigate whether genetic risk for Alzheimer's disease contributes equally to the progression in different disease stages or whether it exhibits a stage-dependent effect. Amyloid (A) and tau (T) status was defined using a combination of available PET and CSF biomarkers in the Alzheimer's Disease Neuroimaging Initiative cohort. In 312 participants with biomarker-confirmed A-T- status, we used Cox proportional hazards models to estimate the contribution of APOE and polygenic risk scores (beyond APOE) to convert to A+T- status (65 conversions). Furthermore, we repeated the analysis in 290 participants with A+T- status and investigated the genetic contribution to conversion to A+T+ (45 conversions). Both survival analyses were adjusted for age, sex and years of education. For progression from A-T- to A+T-, APOE-e4 burden showed a significant effect [hazard ratio (HR) = 2.88; 95% confidence interval (CI): 1.70-4.89; P < 0.001], whereas polygenic risk did not (HR = 1.09; 95% CI: 0.84-1.42; P = 0.53). Conversely, for the transition from A+T- to A+T+, the contribution of APOE-e4 burden was reduced (HR = 1.62; 95% CI: 1.05-2.51; P = 0.031), whereas the polygenic risk showed an increased contribution (HR = 1.73; 95% CI: 1.27-2.36; P < 0.001). The marginal APOE effect was driven by e4 homozygotes (HR = 2.58; 95% CI: 1.05-6.35; P = 0.039) as opposed to e4 heterozygotes (HR = 1.74; 95% CI: 0.87-3.49; P = 0.12). The genetic risk for late-onset Alzheimer's disease unfolds in a disease stage-dependent fashion. A better understanding of the interplay between disease stage and genetic risk can lead to a more mechanistic understanding of the transition between ATN stages and a better understanding of the molecular processes leading to Alzheimer's disease, in addition to opening therapeutic windows for targeted interventions.


Subject(s)
Alzheimer Disease , Genetic Predisposition to Disease , tau Proteins , Humans , Alzheimer Disease/genetics , Male , Female , Aged , tau Proteins/cerebrospinal fluid , tau Proteins/genetics , Genetic Predisposition to Disease/genetics , Disease Progression , Biomarkers/cerebrospinal fluid , Aged, 80 and over , Apolipoproteins E/genetics , Positron-Emission Tomography , Genome-Wide Association Study , Multifactorial Inheritance/genetics , Amyloid beta-Peptides/cerebrospinal fluid , Middle Aged , Cohort Studies
15.
Gels ; 10(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38786227

ABSTRACT

A gel can be defined as a semi-solid structure that has mechanical properties ranging from tough to soft, depending on their constituents [...].

16.
NPJ Parkinsons Dis ; 10(1): 108, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789445

ABSTRACT

A biallelic (AAGGG) expansion in the poly(A) tail of an AluSx3 transposable element within the gene RFC1 is a frequent cause of cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS), and more recently, has been reported as a rare cause of Parkinson's disease (PD) in the Finnish population. Here, we investigate the prevalence of RFC1 (AAGGG) expansions in PD patients of non-Finnish European ancestry in 1609 individuals from the Parkinson's Progression Markers Initiative study. We identified four PD patients carrying the biallelic RFC1 (AAGGG) expansion and did not identify any carriers in controls.

17.
RSC Adv ; 14(7): 4324-4334, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38304567

ABSTRACT

The development of electrochemical stimuli-responsive drug delivery systems is of both academic and industrial interest due to the ease with which it is possible to trigger payload release, providing drug delivery in a controllable manner. Herein, the preparation of in situ forming hydrogels including electroactive polypyrrole nanoparticles (PPy-NPs) where Sr2+ ions are electrochemically loaded for electrically triggered release of Sr2+ ions is reported. The hydrogels were characterized by a variety of techniques including Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), X-ray diffraction (XRD), cyclic voltammetry (CV), etc. The cytocompatibility towards human mesenchymal stem cells (MSCs) and fibroblasts were also studied. The Sr2+ ion loaded PEC-ALD/CS/PPy-NPs hydrogel showed no significant cytotoxicity towards human mesenchymal stem cells (MSCs) and fibroblasts. Sr2+ ions were electrochemically loaded and released from the electroactive hydrogels, and the application of an electrical stimulus enhanced the release of Sr2+ ions from gels by ca. 2-4 fold relative to the passive release control experiment. The antibacterial activity of Sr2+ ions against E. coli and S. aureus was demonstrated in vitro. Although these prototypical examples of Sr2+ loaded electroactive gels don't release sufficient Sr2+ ions to show antibacterial activity against E. coli and S. aureus, we believe future iterations with optimised physical properties of the gels will be capable of doing so.

18.
Alzheimers Dement ; 20(4): 2469-2484, 2024 04.
Article in English | MEDLINE | ID: mdl-38323937

ABSTRACT

INTRODUCTION: Blood protein biomarkers demonstrate potential for Alzheimer's disease (AD) diagnosis. Limited studies examine the molecular changes in AD blood cells. METHODS: Bulk RNA-sequencing of blood cells was performed on AD patients of Chinese descent (n = 214 and 26 in the discovery and validation cohorts, respectively) with normal controls (n = 208 and 38 in the discovery and validation cohorts, respectively). Weighted gene co-expression network analysis (WGCNA) and deconvolution analysis identified AD-associated gene modules and blood cell types. Regression and unsupervised clustering analysis identified AD-associated genes, gene modules, cell types, and established AD classification models. RESULTS: WGCNA on differentially expressed genes revealed 15 gene modules, with 6 accurately classifying AD (areas under the receiver operating characteristics curve [auROCs] > 0.90). These modules stratified AD patients into subgroups with distinct disease states. Cell-type deconvolution analysis identified specific blood cell types potentially associated with AD pathogenesis. DISCUSSION: This study highlights the potential of blood transcriptome for AD diagnosis, patient stratification, and mechanistic studies. HIGHLIGHTS: We comprehensively analyze the blood transcriptomes of a well-characterized Alzheimer's disease cohort to identify genes, gene modules, pathways, and specific blood cells associated with the disease. Blood transcriptome analysis accurately classifies and stratifies patients with Alzheimer's disease, with some gene modules achieving classification accuracy comparable to that of the plasma ATN biomarkers. Immune-associated pathways and immune cells, such as neutrophils, have potential roles in the pathogenesis and progression of Alzheimer's disease.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Transcriptome , Gene Expression Profiling , Gene Regulatory Networks , Biomarkers
19.
NPJ Parkinsons Dis ; 10(1): 33, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331996

ABSTRACT

Despite being the second most common neurodegenerative disorder, little is known about Parkinson's disease (PD) pathogenesis. A number of genetic factors predispose towards PD, among them mutations in GBA1, which encodes the lysosomal enzyme acid-ß-glucosidase. We now perform non-targeted, mass spectrometry based quantitative proteomics on five brain regions from PD patients with a GBA1 mutation (PD-GBA) and compare to age- and sex-matched idiopathic PD patients (IPD) and controls. Two proteins were differentially-expressed in all five brain regions whereas significant differences were detected between the brain regions, with changes consistent with loss of dopaminergic signaling in the substantia nigra, and activation of a number of pathways in the cingulate gyrus, including ceramide synthesis. Mitochondrial oxidative phosphorylation was inactivated in PD samples in most brain regions and to a larger extent in PD-GBA. This study provides a comprehensive large-scale proteomics dataset for the study of PD-GBA.

20.
Neurology ; 102(3): e208096, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38165303

ABSTRACT

In the last 2 years, there have been 3 successful trials of antiamyloid antibodies in Alzheimer disease (AD): aducanemab, now controversially US Food and Drug Administration-approved under the accelerated approval pathway1; lecanemab, now FDA-approved2; and donanemab, now going through the approval process.3 All 3 share a common broad mechanism, that is, antibody-mediated removal of ß-amyloid (Aß) from the brain, and this is almost certainly the basis of their therapeutic action.4 When used in the earliest symptomatic stages of AD, all have modest clinical effects, all clear Aß from the brain, and all show evidence for some changes in molecular markers believed to be downstream of Aß accumulation in keeping with disease modification.4 However, all these drugs-and several other antiamyloid immunotherapies that failed to show positive effects in clinical trials (e.g. bapineuzemab and gantenerumab)5,6-have the troubling adverse event of antibody-related imaging abnormalities (ARIA). ARIA can take the form of vasogenic edema or sulcal effusion (ARIA-E) or haemosiderin deposition due to hemorrhage (ARIA-H).7 In vivo, ARIA is detected using MRI: ARIA-E is visible on fluid attenuation inversion recovery sequences; ARIA-H is best seen on iron-sensitive (T2* or susceptibility-weighted imaging) as microbleeds and/or superficial hemosiderin deposition. The pathophysiology of ARIA has yet to be fully determined but may result from antibody-mediated breakdown of amyloid plaques releasing Aß which is deposited in vessels leading to increased cerebral amyloid angiopathy or alterations in perivascular clearance or inflammation, possibly through complement activation.8.


Subject(s)
Alzheimer Disease , Amyloidogenic Proteins , United States , Humans , Diagnostic Imaging , Amyloid beta-Peptides , Inflammation , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics
SELECTION OF CITATIONS
SEARCH DETAIL