Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Robot ; 8(77): eadc8892, 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37075102

ABSTRACT

Autonomous robots can learn to perform visual navigation tasks from offline human demonstrations and generalize well to online and unseen scenarios within the same environment they have been trained on. It is challenging for these agents to take a step further and robustly generalize to new environments with drastic scenery changes that they have never encountered. Here, we present a method to create robust flight navigation agents that successfully perform vision-based fly-to-target tasks beyond their training environment under drastic distribution shifts. To this end, we designed an imitation learning framework using liquid neural networks, a brain-inspired class of continuous-time neural models that are causal and adapt to changing conditions. We observed that liquid agents learn to distill the task they are given from visual inputs and drop irrelevant features. Thus, their learned navigation skills transferred to new environments. When compared with several other state-of-the-art deep agents, experiments showed that this level of robustness in decision-making is exclusive to liquid networks, both in their differential equation and closed-form representations.

2.
PLoS One ; 17(11): e0275358, 2022.
Article in English | MEDLINE | ID: mdl-36327195

ABSTRACT

We present a novel setup for treating sepsis using distributional reinforcement learning (RL). Sepsis is a life-threatening medical emergency. Its treatment is considered to be a challenging high-stakes decision-making problem, which has to procedurally account for risk. Treating sepsis by machine learning algorithms is difficult due to a couple of reasons: There is limited and error-afflicted initial data in a highly complex biological system combined with the need to make robust, transparent and safe decisions. We demonstrate a suitable method that combines data imputation by a kNN model using a custom distance with state representation by discretization using clustering, and that enables superhuman decision-making using speedy Q-learning in the framework of distributional RL. Compared to clinicians, the recovery rate is increased by more than 3% on the test data set. Our results illustrate how risk-aware RL agents can play a decisive role in critical situations such as the treatment of sepsis patients, a situation acerbated due to the COVID-19 pandemic (Martineau 2020). In addition, we emphasize the tractability of the methodology and the learning behavior while addressing some criticisms of the previous work (Komorowski et al. 2018) on this topic.


Subject(s)
COVID-19 , Sepsis , Humans , Pandemics , Reinforcement, Psychology , Algorithms , Sepsis/diagnosis
3.
Article in English | MEDLINE | ID: mdl-30201842

ABSTRACT

The OpenWorm project has the ambitious goal of producing a highly detailed in silico model of the nematode Caenorhabditis elegans A crucial part of this work will be a model of the nervous system encompassing all known cell types and connections. The appropriate level of biophysical detail required in the neuronal model to reproduce observed high-level behaviours in the worm has yet to be determined. For this reason, we have developed a framework, c302, that allows different instances of neuronal networks to be generated incorporating varying levels of anatomical and physiological detail, which can be investigated and refined independently or linked to other tools developed in the OpenWorm modelling toolchain.This article is part of a discussion meeting issue 'Connectome to behaviour: modelling C. elegans at cellular resolution'.


Subject(s)
Caenorhabditis elegans/physiology , Connectome/methods , Models, Neurological , Nervous System Physiological Phenomena , Animals , Computer Simulation , Nervous System/anatomy & histology
4.
Article in English | MEDLINE | ID: mdl-30201845

ABSTRACT

The adoption of powerful software tools and computational methods from the software industry by the scientific research community has resulted in a renewed interest in integrative, large-scale biological simulations. These typically involve the development of computational platforms to combine diverse, process-specific models into a coherent whole. The OpenWorm Foundation is an independent research organization working towards an integrative simulation of the nematode Caenorhabditis elegans, with the aim of providing a powerful new tool to understand how the organism's behaviour arises from its fundamental biology. In this perspective, we give an overview of the history and philosophy of OpenWorm, descriptions of the constituent sub-projects and corresponding open-science management practices, and discuss current achievements of the project and future directions.This article is part of a discussion meeting issue 'Connectome to behaviour: modelling C. elegans at cellular resolution'.


Subject(s)
Caenorhabditis elegans/physiology , Connectome/methods , Models, Biological , Animals , Connectome/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...